Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Composition operators between Bergman and Hardy spaces


Author: Wayne Smith
Journal: Trans. Amer. Math. Soc. 348 (1996), 2331-2348
MSC (1991): Primary 47B38; Secondary 30D55, 46E15
DOI: https://doi.org/10.1090/S0002-9947-96-01647-9
MathSciNet review: 1357404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study composition operators between weighted Bergman spaces. Certain growth conditions for generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such operators to be bounded or compact. Particular choices for the weights yield results on composition operators between the classical unweighted Bergman and Hardy spaces.


References [Enhancements On Off] (What's this?)

  • [A] Ahlfors, L.V., Conformal Invariants, McGraw-Hill, New York, 1973. MR 50:10211
  • [D] Duren, P.L., Theory of $H^{p}$ Spaces, Academic Press, New York, 1970. MR 42:3552
  • [ESS] Essén, M., Shea, D.F. and Stanton, C.S., A value-distribution criterion for the class $L\log L$, and some related questions, Ann. Inst. Fourier (Grenoble) 35 (1985), 127--150. MR 87e:30041
  • [GP] Gehring, F. W. and Palka, B. P., Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172--199. MR 55:10676
  • [H] Hunziker, H., Kompositionsoperatoren auf klassischen Hardyräumen, Thesis, Universität Zurich (1989).
  • [HJ] Hunziker, H. and Jarchow, H., Composition operators which improve integrability, Math. Nachr. 152 (1991), 83--91. MR 93d:47061
  • [L] Littlewood, J.E., On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481--519.
  • [MS] MacCluer, B.D. and Shapiro, J.H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), 878--906. MR 87h:47048
  • [R] Riedl, R., Composition operators and geometric properties of analytic functions, Thesis, Universität Zurich (1994).
  • [Sh] Shapiro, J.H., The essential norm of a composition operator, Annals of Math. 127 (1987), 375--404. MR 88c:47058
  • [Sh2] Shapiro, J.H., Composition Operators and Classical Function Theory, Springer-Verlag, New York Berlin, 1993. MR 94k:47049
  • [ST] Shapiro, J.H. and Taylor, P.D., Compact, nuclear and Hilbert-Schmidt composition operators on $H^{2}$, Indiana University Math. J. 23 (1973), 471--496. MR 48:4816
  • [St] Stanton, C. S., Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), 459--468. MR 88c:32002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 47B38, 30D55, 46E15

Retrieve articles in all journals with MSC (1991): 47B38, 30D55, 46E15


Additional Information

Wayne Smith
Affiliation: Department of Mathematics, University of Hawaii, Honolulu, Hawaii 96822
Email: wayne@math.hawaii.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01647-9
Keywords: Bergman spaces, Hardy spaces, composition operators, Nevanlinna counting function
Received by editor(s): February 23, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society