Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quadratic forms for the 1-D semilinear Schrödinger equation


Authors: Carlos E. Kenig, Gustavo Ponce and Luis Vega
Journal: Trans. Amer. Math. Soc. 348 (1996), 3323-3353
MSC (1991): Primary 35K22; Secondary 35P05
DOI: https://doi.org/10.1090/S0002-9947-96-01645-5
MathSciNet review: 1357398
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with 1-D quadratic semilinear
Schrödinger equations. We study local well posedness in classical Sobolev space $H^s$ of the associated initial value problem and periodic boundary value problem. Our main interest is to obtain the lowest value of $s$ which guarantees the desired local well posedness result. We prove that at least for the quadratic cases these values are negative and depend on the structure of the nonlinearity considered.


References [Enhancements On Off] (What's this?)

  • [BKPSV] B. Birnir, C. E. Kenig, G. Ponce, N. Svanstedt and L. Vega, On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. (to appear).
  • [B] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Anal. 3 (1993), 107--156, 209--262. MR 95d:35160b
  • [C] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 22 Universidade Federal do Rio de Janeiro.
  • [CW] T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. TMA 14 (1990), 807--836. MR 91j:35252
  • [D] D. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burger's equation, SIAM J. Math. Anal. (to appear).
  • [F1] C. Fefferman, Inequalties for strongly singular convolution operators, Acta Math. 124 (1970), 9--36. MR 41:2468
  • [F2] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44--52. MR 47:9160
  • [GV1] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations, J. Funct. Anal. 32 (1979), 1--71. MR 82c:35057 and MR 82c:35058
  • [GV2] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pure Appl. 64 (1985), 363--401. MR 87i:35171
  • [K1] T. Kato, Quasi-linear equations of evolutions, with applications to partial differential equations, Lecture Notes in Math, 448, Springer-Verlag, 1975, pp. 27--50. MR 53:11252
  • [K2] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Math. Supp. Studies, Studies in Applied Math. 8 (1983), 93--128. MR 86f:35160
  • [K3] T. Kato, Nonlinear Schrödinger equation, Schrödinger operators, Lecture Notes in Physics, 345 (H. Holden and A. Jensen, eds.), Springer-Verlag, 1989, pp. 218--263. MR 91d:35202
  • [KPV1] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Koreteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527--620. MR 94h:35229
  • [KPV2] C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1--21. MR 94g:35196
  • [KPV3] C. E. Kenig, G. Ponce and L. Vega, Bilinear estimates with applications to the KdV equations, J. Amer. Math. Soc. (to appear).
  • [KM1] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221--1268. MR 94h:35137
  • [KM2] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, preprint.
  • [L] H. Lindblad, A sharp counter example to local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993), 503--539. MR 94h:35165
  • [PS] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. P.D.E. 18 (1993), 169--177. MR 95a:35092
  • [S] R. Strichartz, Restriction of Fourier transforms to quadratic surface and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705--714. MR 58:23577
  • [T] Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funk. Ekva. 30 (1987), 115--125. MR 89c:35143
  • [Z] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189--201. MR 52:8788

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35K22, 35P05

Retrieve articles in all journals with MSC (1991): 35K22, 35P05


Additional Information

Carlos E. Kenig
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: cek@math.uchicago.edu

Gustavo Ponce
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
Email: ponce@math.ucsb.edu

Luis Vega
Affiliation: Departamento de Matematicas, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain
Email: MTPVEGOL@lg.ehu.es

DOI: https://doi.org/10.1090/S0002-9947-96-01645-5
Keywords: Schrödinger equation, bilinear estimates, well-posedness
Received by editor(s): May 17, 1995
Additional Notes: C. E. Kenig and G. Ponce were supported by NSF grants. L. Vega was supported by a DGICYT grant.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society