Homology and some homotopy decompositions

for the James filtration on spheres

Author:
Paul Selick

Journal:
Trans. Amer. Math. Soc. **348** (1996), 3549-3572

MSC (1991):
Primary 55P99, 55P10

DOI:
https://doi.org/10.1090/S0002-9947-96-01593-0

MathSciNet review:
1348157

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The filtrations on the James construction on spheres, , have played a major role in the study of the double suspension and have been used to get information about the homotopy groups of spheres and Moore spaces and to construct product decompositions of related spaces. In this paper we calculate for odd primes . When has the form , the result is well known, but these are exceptional cases in which the homology has polynomial growth. We find that in general the homology has exponential growth and in some cases also has higher -torsion. The calculations are applied to construct a -local product decomposition of for which demonstrates a mod homotopy exponent in these cases.

**[AH]**J.F. Adams and P. Hilton,*On the chain algebra of a loop space*, Comment. Math. Helv.**30**(1955), 305--330. MR**17:11196****[A]**D. Anick,*Differential algebras in topology*, Research Notes in Math. 3, A.K. Peters Ltd., 1993. MR**94h:55020****[CML]**F. Cohen, T. Lada, P. May,*Homology of iterated loop spaces*, Springer Lecture Notes in Math. Vol. 533, Springer-Verlag, 1976. MR**55:9096****[CMN1]**F. Cohen, J. Moore, J. Neisendorfer,*Torsion in the homotopy groups*, Ann. of Math.**109**(1979), 121--168. MR**80e:55024****[CMN2]**F. Cohen, J. Moore, J. Neisendorfer,*The double suspension and exponents in the homotopy groups of spheres*, Ann. of Math.**110**(1979), 121--168. MR**81e:55021****[CMN3]**F. Cohen, J. Moore, J. Neisendorfer,*Exponents in homotopy theory*, Algebraic Topology and K-Theory, Ann. of Math. Studies**113**(1987), 3--34. MR**89d:55035****[FHT]**Y. Felix, S. Halperin, J.-C. Thomas,*The homotopy Lie algebra for finite complexes*, Publ. Math. I.H.E.S.**56**(1982), 387--410. MR**85e:55010****[Ga]**T. Ganea,*A generalization of the homology and homotopy suspension*, Comment. Math. Helv**39**(1965), 295--322. MR**31:4033****[Gr]**B. Gray,*On Toda's fibration*, Math. Proc. Camb. Phil. Soc.**97**(1985), 289--298. MR**86i:55016****[H]**P. Hilton,*On the homotopy groups of the union of spheres*, J. London Math. Soc.**30**(1955), 154--172. MR**16:847d****[J]**I. James,*Reduced product spaces*, Ann. of Math.**62**(1955), 170--197. MR**17:3966****[MN]**J. Moore and J. Neisendorfer,*Equivalence of Toda-Hopf invariants*, Israel J. Math.**66**(1--3) (1989), 300--318. MR**90g:55013****[N1]**J. Neisendorfer,*Primary homotopy theory*, Mem. AMS No. 232, 1980. MR**81b:55035****[N2]**J. Neisendorfer,*The exponent of a Moore space*, Algebraic Topology and K-Theory, Ann. of Math. Studies**113**(1987), 35--71. MR**89e:55029****[N3]**J. Neisendorfer,*-primary exponents*, Math. Proc. Camb. Phil. Soc.**90**(1981), 63--83. MR**82e:55026****[NS]**J. Neisendorfer and P. Selick,*Some examples of spaces with or without exponents*, Modern Trends in Algebraic Topology II, Can. Math. Soc. Proc. 2 (1982), 343--357. MR**84b:55017****[S1]**P. Selick,*Odd primary torsion in*, Topology**17**(1978), 407--412. MR**80c:55010****[S2]**P. Selick,*A spectral sequence concerning the double suspension*, Invent. Math.**64**(1981), 15--24. MR**82j:55015****[S3]**P. Selick,*Moore conjectures*, Alg. Top. -- Rational Homotopy, Springer Lecture Notes in Math. 1318, 1988, pp. (219--227). MR**90c:55014****[S4]**P. Selick,*Constructing product filtrations by means of a generalization of a theorem of Ganea*, Trans. Amer. Math. Soc.**348**(1996), 3573--3589. CMP**95:12****[T]**H. Toda,*On the double suspension*, J. Institute Polytech. Osaka City Univ., Ser. A**7**(1956), 103--145. MR**19:1188g**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
55P99,
55P10

Retrieve articles in all journals with MSC (1991): 55P99, 55P10

Additional Information

**Paul Selick**

Affiliation:
Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Email:
selick@math.toronto.edu

DOI:
https://doi.org/10.1090/S0002-9947-96-01593-0

Received by editor(s):
July 21, 1994

Additional Notes:
Research partially supported by a grant from NSERC

Article copyright:
© Copyright 1996
American Mathematical Society