Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Seifert manifolds with fiber
spherical space forms


Authors: Jong Bum Lee, Kyung Bai Lee and Frank Raymond
Journal: Trans. Amer. Math. Soc. 348 (1996), 3763-3798
MSC (1991): Primary 57M50; Secondary 55R60, 57M05, 57M60
DOI: https://doi.org/10.1090/S0002-9947-96-01609-1
MathSciNet review: 1348866
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Seifert fiber spaces modeled on the product space $S^3 \times \mathbb {R}^2$. Such spaces are ``fiber bundles'' with singularities. The regular fibers are spherical space-forms of $S^3$, while singular fibers are finite quotients of regular fibers. For each of possible space-form groups $\Delta $ of $S^3$, we obtain a criterion for a group extension $\varPi $ of $\Delta $ to act on $S^3 \times \mathbb {R}^2$ as weakly $S^3$-equivariant maps, which gives rise to a Seifert fiber space modeled on $S^3 \times \mathbb {R}^2$ with weakly $S^3$-equivariant maps $ \mathrm {TOP}_{S^3}(S^3 \times \mathbb {R}^2)$ as the universal group. In the course of proving our main results, we also obtain an explicit formula for $H^2(Q; \mathbb {Z})$ for a cocompact crystallographic or Fuchsian group $Q$. Most of our methods for $S^3$ apply to compact Lie groups with discrete center, and we state some of our results in this general context.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, Inc., Orlando, FL, 1972. MR 54:1265
  • [2] P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, (1969), Topology of Manifolds, edited by J.C. Cantrell and C.H. Edwards, Markham, Chicago, 227--264. MR 42:6839
  • [3] P. E. Conner and F. Raymond, Holomorphic Seifert fiberings, Proc. 2nd Conference on Transformations groups, Part II. Springer--Verlag, Lecture Notes in Math. vol. 299, (1971), 124--204. MR 58:28698
  • [4] P. E. Conner and F. Raymond, Deforming Homotopy Equivalences to Homeomorphisms in Aspherical Manifolds, Bull. Amer. Math. Soc. 83 (1977), 36--85. MR 57:7629
  • [5] P. Igodt and K. B. Lee, Applications of group cohomology to space constructions, Trans. Amer. Math. Soc. 304 (1987), 69--82. MR 88j:57045
  • [6] M. Jankins and W. Neumann, Lectures on Seifert manifolds, Brandeis University, Waltham, Mass., 1983. MR 85j:57015
  • [7] R. Kulkarni and F. Raymond, $3$-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985), 231-268. MR 87h:53092
  • [8] K. B. Lee, Infra-solvmanifolds of type (R), Quart. J. Math. Oxford (2) 46 (1995), 185--195
  • [9] K. B. Lee and F. Raymond, The role of Seifert fiber spaces in transformation groups, Contemporary Math., A. M. S. 36 (1985), 367--425. MR 86j:57015
  • [10] K. B. Lee and F. Raymond, Seifert manifolds modeled on principal bundles, Transf. Groups (Osaka,1987); Springer-Verlag, Lecture Notes in Math. vol. 1375, (1989), 207--215. MR 90f:57041
  • [11] S. S. MacLane, Homology, Springer--Verlag, 1963. MR 28:122
  • [12] J. Milnor, Groups which act on $S^n$ without fixed points, American J. Math. 79 (1957), 623--630. MR 19:761d
  • [13] P. Orlik, Seifert Manifolds, Springer--Verlag, Lecture Notes in Math., vol. 291, 1972. MR 54:14590
  • [14] M. M. Postnikov, Three--dimensional spherical forms, Trudy Mat. Inst. Steklov. 196 (1991), 114--146; Proc. Steklov Inst. Math. 1992, no. 4 (196), 129--161. MR 92j:53016 (Russian original)
  • [15] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401--487. MR 84m:57009
  • [16] F. Raymond and A. Vasquez, 3-manifolds whose universal coverings are Lie groups, Topology and Appl. 12 (1981), 161--179. MR 82i:57011
  • [17] F. Raymond and D. Wigner, Construction of aspherical manifolds, Geometric Appl. of Homotopy Theory I, Springer-Verlag, Lecture Notes in Math. vol. 657 (1978), 408--422. MR 80d:57003
  • [18] J. A. Wolf, Spaces of constant curvature, 4th ed., Publish or Perish, Inc., Berkeley, CA, 1977. MR 49:7958 (3rd ed.)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57M50, 55R60, 57M05, 57M60

Retrieve articles in all journals with MSC (1991): 57M50, 55R60, 57M05, 57M60


Additional Information

Jong Bum Lee
Affiliation: Department of Mathematics, Sogang University, Seoul 121–742, Korea
Email: jlee@ccs.sogang.ac.kr

Kyung Bai Lee
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
Email: kblee@.math.uoknor.edu

Frank Raymond
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: fraymond@math.lsa.umich.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01609-1
Keywords: Seifert fiber space, spherical space-form, Fuchsian group, crystallographic group, group extension, cohomology of groups
Received by editor(s): December 1, 1994
Received by editor(s) in revised form: September 7, 1995
Additional Notes: The first author was supported in part by the Basic Science Research Institute Program, Ministry of Education, 1994, Project No. BSRI-94-1422, and by TGRC-KOSEF, Korea.
The third author was supported in part by National Science Foundation grant DMS-9306240, U.S.A
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society