Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Extremal problems and symmetrization
for plane ring domains


Authors: A. Yu. Solynin and M. Vuorinen
Journal: Trans. Amer. Math. Soc. 348 (1996), 4095-4112
MSC (1991): Primary 30C85; Secondary 31A15
DOI: https://doi.org/10.1090/S0002-9947-96-01546-2
MathSciNet review: 1333399
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that Teichmüller's classical lower bound for the capacity of a ring domain, obtained by circular symmetrization, can be replaced by an explicit one which is almost always better. The proof is based on a duplication formula for the solution of an associated extremal problem. Some inequalities are obtained for conformal invariants.


References [Enhancements On Off] (What's this?)

  • [A] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. MR 0200442
  • [B] Albert Baernstein II, Some topics in symmetrization, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 111–123. MR 1013818, https://doi.org/10.1007/BFb0086796
  • [Bat] Bateman Manuscript Project, Higher Transcendental Functions (A. Erdelyi, ed.), vol. 2, 1955. MR 16:586c
  • [D] V. N. Dubinin, Symmetrization in geometric theory of functions (Russian), Uspehi Mat. Nauk 49 (1994), 3-76. CMP 95:05
  • [F] J. Ferrand, Conformal capacities and extremal metrics, Manuscript, January 1994.
  • [FC] Henry E. Fettis and James C. Caslin, A table of the complete elliptic integral of the first kind for complex values of the modulus. Part I, ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1969. MR 0253511
  • [GS] F. P. Gardiner and D. P. Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992), 683-736. CMP 92:16
  • [G] F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499–519. MR 0132841, https://doi.org/10.1090/S0002-9947-1961-0132841-2
  • [HLM] David A. Herron, Xiang Yang Liu, and David Minda, Ring domains with separating circles or separating annuli, J. Analyse Math. 53 (1989), 233–252. MR 1014988, https://doi.org/10.1007/BF02793416
  • [J1] J. Jenkins, Univalent functions and conformal mapping, Ergebnisse der Math. Vol. 18, Corrected ed., Springer-Verlag, Berlin--Heidelberg--New York, 1965.
  • [J2] J. Jenkins, On metrics defined by modules, Pacific J. Math. (to appear).
  • [K] G. V. Kuz′mina, Moduli of families of curves and quadratic differentials, Trudy Mat. Inst. Steklov. 139 (1980), 241 (Russian). MR 612632
    G. V. Kuz′mina, Moduli of families of curves and quadratic differentials, Proc. Steklov Inst. Math. 1 (1982), vii+231. A translation of Trudy Mat. Inst. Steklov. 139 (1980). MR 664708
  • [LV] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
  • [S] M. Schiffer, On the modulus of doubly--connected domains, Quart. J. Math. Oxford Ser. 17 (1946), 197--213. MR 8:325b
  • [SO1] A. Yu. Solynin, On the extremal decompositions of the plane or disk on two nonoverlapping domains (Russian), Kuban University, Krasnodar, 1984, Deponirovano in VINITI, N7800, 16p.
  • [SO2] A. Yu. Solynin, Moduli of doubly connected domains, and conformally invariant metrics, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), no. Modul. Funktsii Kvadrat. Formy. 2, 122–131, 175 (Russian); English transl., J. Math. Sci. 70 (1994), no. 6, 2140–2146. MR 1164222, https://doi.org/10.1007/BF02111332
  • [SO3] A. Yu. Solynin, Solution of the Pólya-Szegő isoperimetric problem, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 9, 140–153, 190 (Russian); English transl., J. Soviet Math. 53 (1991), no. 3, 311–320. MR 982489, https://doi.org/10.1007/BF01303655
  • [T] O. Teichmüller, Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621--678.
  • [TS] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
  • [V1] Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174
  • [V2] Matti Vuorinen, Conformally invariant extremal problems and quasiconformal maps, Quart. J. Math. Oxford Ser. (2) 43 (1992), no. 172, 501–514. MR 1188388, https://doi.org/10.1093/qmathj/43.4.501

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 30C85, 31A15

Retrieve articles in all journals with MSC (1991): 30C85, 31A15


Additional Information

A. Yu. Solynin
Affiliation: Steklov Institute, Fontanka 27, St. Petersburg 191011, Russia
Email: solynin@pdmi.ras.ru FAX: 007-812-3105377

M. Vuorinen
Affiliation: University of Helsinki, FIN-00100 Helsinki, Finland
Email: vuorinen@csc.fi FAX: 358-0-1913213

DOI: https://doi.org/10.1090/S0002-9947-96-01546-2
Received by editor(s): November 18, 1994
Received by editor(s) in revised form: May 2, 1995
Article copyright: © Copyright 1996 American Mathematical Society