Algebraic surfaces with log canonical singularities and the fundamental groups of their smooth parts

Author:
D.-Q. Zhang

Journal:
Trans. Amer. Math. Soc. **348** (1996), 4175-4184

MSC (1991):
Primary 14J45; Secondary 14E20, 14J26, 14J17

DOI:
https://doi.org/10.1090/S0002-9947-96-01595-4

MathSciNet review:
1348158

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a log surface with at worst log canonical singularities and reduced boundary such that is nef and big. We shall prove that either has finite fundamental group or is affine-ruled. Moreover, and the structure of are determined in some sense when .

**1.**T. C. Chau,*A note concerning Fox's paper on Fenchel's conjecture*, Proc. Amer. Math. Soc.**88**(1983), 584--586. MR**84m:20038****2.**R. H. Fox,*On Fenchel's conjecture about F-groups*, Math. Tidsskr. B. (1952), 61--65. MR**14:843c****3.**Y. Kawamata,*The cone of curves of algebraic varieties*, Ann. of Math.**119**(1984), 603--633. MR**86c:14013b****4.**Y. Kawamata,*The crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces*, Ann. of Math.**127**(1988), 93--163. MR**89d:14023****5.**Y. Kawamata, K. Matsuda and K. Matsuki,*Introduction to the minimal model problem*, Adv. Study Pure Math.**10**(1987), 283--360. MR**89e:14015****6.**J. Kollár,*Flip and abundance for algebraic threefolds*, Astérisque**211**(1992). MR**94f:14013****7.**M. Miyanishi,*Non-complete algebraic surfaces*, Lecture Notes in Mathematics, vol. 857, Springer-Verlag, 1981. MR**83b:14011****8.**M. Miyanishi and S. Tsunoda,*Non-complete algbraic surfaces with logarithmic Kodaira dimension and with non-connected boundaries at infinity*, Japan. J. Math.**10**(1984), 195--242. MR**88b:14029****9.**M. Miyanishi and S. Tsunoda,*Logarithmic del Pezzo surfaces of rank one with non-contractible boundaries*, Japan. J. Math.**10**(1984), 271--319. MR**88b:14030****10.**M. V. Nori,*Zariski's conjecture and related problems*, Ann. Sci. Éc. Norm. Sup.**16**(1983), 305--344. MR**86j:14027****11.**D.-Q. Zhang,*Algebraic surfaces with nef and big anti-canonical divisor*, Math. Proc. Cambridge Philos. Soc.**117**(1995), 161--163. MR**95:02****12.**D.-Q. Zhang,*Normal algebraic surfaces of anti-Kodaira dimension one or two*, Intern. J. Math.**6**(1995), 329--336.**13.**A. Fujiki, R. Kobayashi and S. Lu,*On the fundamental group of certain open normal surfaces*, Saitama Math. J.**11**(1993), 15--20. MR**94m:32042****14.**L. Badescu,*Anticanonical models of ruled surfaces*, Ann. Univ. Ferrara**29**(1983), 165--177. MR**85m:14056****15.**R. V. Gurjar and D.-Q. Zhang,*of smooth points of a log del Pezzo surface is finite: I, II*, J. Math. Sci. Univ. Tokyo**1**(1994), 137-180;**2**(1995) 165--196. MR**95m:14015**; CMP**95:17****16.**Y. Kawamata,*On the classification of non-complete algebraic surfaces*, Lecture Notes in Mathematics, vol. 732, Springer-Verlag, 1979, pp. 215--232. MR**81c:14021****17.**F. Sakai,*Anticanonical models of rational surfaces*, Math. Ann.**269**(1984), 389--410. MR**85m:14058****18.**D.-Q. Zhang,*The fundamental group of the smooth part of a log Fano variety*, Osaka J. Math.**32**(1995), 637--644. CMP**96:06**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
14J45,
14E20,
14J26,
14J17

Retrieve articles in all journals with MSC (1991): 14J45, 14E20, 14J26, 14J17

Additional Information

**D.-Q. Zhang**

Affiliation:
Department of Mathematics, National University of Singapore, Singapore

Email:
matzdq@nus.sg

DOI:
https://doi.org/10.1090/S0002-9947-96-01595-4

Keywords:
Log canonical singularity,
nef and big anti-canonical divisor,
fundamental group,
affine-ruledness

Received by editor(s):
February 25, 1995

Received by editor(s) in revised form:
June 9, 1995

Article copyright:
© Copyright 1996
American Mathematical Society