Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Algebraic surfaces with log canonical singularities and the fundamental groups of their smooth parts

Author: D.-Q. Zhang
Journal: Trans. Amer. Math. Soc. 348 (1996), 4175-4184
MSC (1991): Primary 14J45; Secondary 14E20, 14J26, 14J17
MathSciNet review: 1348158
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(S, \Delta )$ be a log surface with at worst log canonical singularities and reduced boundary $\Delta $ such that $-(K_{S}+\Delta )$ is nef and big. We shall prove that $S^{o} = S - Sing S - \Delta $ either has finite fundamental group or is affine-ruled. Moreover, $\pi _{1}(S^{o})$ and the structure of $S$ are determined in some sense when $\Delta = 0$.

References [Enhancements On Off] (What's this?)

  • 1. T. C. Chau, A note concerning Fox's paper on Fenchel's conjecture, Proc. Amer. Math. Soc. 88 (1983), 584--586. MR 84m:20038
  • 2. R. H. Fox, On Fenchel's conjecture about F-groups, Math. Tidsskr. B. (1952), 61--65. MR 14:843c
  • 3. Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603--633. MR 86c:14013b
  • 4. Y. Kawamata, The crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. 127 (1988), 93--163. MR 89d:14023
  • 5. Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. Study Pure Math. 10 (1987), 283--360. MR 89e:14015
  • 6. J. Kollár, Flip and abundance for algebraic threefolds, Astérisque 211 (1992). MR 94f:14013
  • 7. M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics, vol. 857, Springer-Verlag, 1981. MR 83b:14011
  • 8. M. Miyanishi and S. Tsunoda, Non-complete algbraic surfaces with logarithmic Kodaira dimension $-\infty $ and with non-connected boundaries at infinity, Japan. J. Math. 10 (1984), 195--242. MR 88b:14029
  • 9. M. Miyanishi and S. Tsunoda, Logarithmic del Pezzo surfaces of rank one with non-contractible boundaries, Japan. J. Math. 10 (1984), 271--319. MR 88b:14030
  • 10. M. V. Nori, Zariski's conjecture and related problems, Ann. Sci. Éc. Norm. Sup. 16 (1983), 305--344. MR 86j:14027
  • 11. D.-Q. Zhang, Algebraic surfaces with nef and big anti-canonical divisor, Math. Proc. Cambridge Philos. Soc. 117 (1995), 161--163. MR 95:02
  • 12. D.-Q. Zhang, Normal algebraic surfaces of anti-Kodaira dimension one or two, Intern. J. Math. 6 (1995), 329--336.
  • 13. A. Fujiki, R. Kobayashi and S. Lu, On the fundamental group of certain open normal surfaces, Saitama Math. J. 11 (1993), 15--20. MR 94m:32042
  • 14. L. Badescu, Anticanonical models of ruled surfaces, Ann. Univ. Ferrara 29 (1983), 165--177. MR 85m:14056
  • 15. R. V. Gurjar and D.-Q. Zhang, $\pi _{1}$ of smooth points of a log del Pezzo surface is finite: I, II, J. Math. Sci. Univ. Tokyo 1 (1994), 137-180; 2 (1995) 165--196. MR 95m:14015; CMP 95:17
  • 16. Y. Kawamata, On the classification of non-complete algebraic surfaces, Lecture Notes in Mathematics, vol. 732, Springer-Verlag, 1979, pp. 215--232. MR 81c:14021
  • 17. F. Sakai, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), 389--410. MR 85m:14058
  • 18. D.-Q. Zhang, The fundamental group of the smooth part of a log Fano variety, Osaka J. Math. 32 (1995), 637--644. CMP 96:06

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14J45, 14E20, 14J26, 14J17

Retrieve articles in all journals with MSC (1991): 14J45, 14E20, 14J26, 14J17

Additional Information

D.-Q. Zhang
Affiliation: Department of Mathematics, National University of Singapore, Singapore

Keywords: Log canonical singularity, nef and big anti-canonical divisor, fundamental group, affine-ruledness
Received by editor(s): February 25, 1995
Received by editor(s) in revised form: June 9, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society