Wiener's test for space-time random walks

and its applications

Authors:
Yasunari Fukai and Kôhei Uchiyama

Journal:
Trans. Amer. Math. Soc. **348** (1996), 4131-4152

MSC (1991):
Primary 60J15, 60J45, 31C20

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper establishes a criterion for whether a -dimensional random walk on the integer lattice visits a space-time subset infinitely often or not. It is a precise analogue of Wiener's test for regularity of a boundary point with respect to the classical Dirichlet problem. The test obtained is applied to strengthen the harder half of Kolmogorov's test for the random walk.

**[E]**Paul Erdös,*On the law of the iterated logarithm*, Ann. of Math. (2)**43**(1942), 419–436. MR**0006630****[EG]**Lawrence C. Evans and Ronald F. Gariepy,*Wiener’s criterion for the heat equation*, Arch. Rational Mech. Anal.**78**(1982), no. 4, 293–314. MR**653544**, 10.1007/BF00249583**[F1]**W. Feller,*The general form of the so-called law of the iterated logarithm*, Trans. Amer. Math. Soc.**54**(1943), 373–402. MR**0009263**, 10.1090/S0002-9947-1943-0009263-7**[F2]**W. Feller,*The law of the iterated logarithm for identically distributed random variables*, Ann. of Math. (2)**47**(1946), 631–638. MR**0017894****[F3]**William Feller,*An introduction to probability theory and its applications. Vol. I*, John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1957. 2nd ed. MR**0088081****[GK]**B. V. Gnedenko and A. N. Kolmogorov,*Limit distributions for sums of independent random variables*, Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. MR**0062975****[GL]**Nicola Garofalo and Ermanno Lanconelli,*Wiener’s criterion for parabolic equations with variable coefficients and its consequences*, Trans. Amer. Math. Soc.**308**(1988), no. 2, 811–836. MR**951629**, 10.1090/S0002-9947-1988-0951629-2**[IM]**Kiyosi Itô and H. P. McKean Jr.,*Potentials and the random walk*, Illinois J. Math.**4**(1960), 119–132. MR**0121581****[Ld]**Landis, E.M.,*Necessary and sufficient conditions for regularity of a boundary point in the Dirichlet problem for the heat-conduction equation*, Soviet Math.**10**(1969), 380-384. MR**41:7308 (of Russian original)****[Lm]**John Lamperti,*Wiener’s test and Markov chains*, J. Math. Anal. Appl.**6**(1963), 58–66. MR**0143258****[Lv]**Lévy, P.,*Théorie de l'addition des variables aléatoires*, Paris: Gautier-Villars (1937).**[M]**Minoru Motoo,*Proof of the law of iterated logarithm through diffusion equation*, Ann. Inst. Statist. Math.**10**(1958), 21–28. MR**0097866****[P]**Petrovskii, I.,*Zur ersten Randwertaufgabe der Wärmeleitungsgleichung*, Compos. Math.**1**(1935), 383-419.**[S]**Frank Spitzer,*Principles of random walk*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, Vol. 34. MR**0388547****[U]**Kōhei Uchiyama,*A probabilistic proof and applications of Wiener’s test for the heat operator*, Math. Ann.**283**(1989), no. 1, 65–86. MR**973804**, 10.1007/BF01457502

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
60J15,
60J45,
31C20

Retrieve articles in all journals with MSC (1991): 60J15, 60J45, 31C20

Additional Information

**Yasunari Fukai**

Affiliation:
Department of Applied Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

Email:
uchiyama@neptune.ap.titech.ac.jp

**Kôhei Uchiyama**

Affiliation:
Department of Applied Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

DOI:
https://doi.org/10.1090/S0002-9947-96-01643-1

Keywords:
Wiener's test,
random walk,
Kolmogorov's test,
discrete heat equation,
regularity of a minimal Martin boundary point

Received by editor(s):
May 10, 1995

Article copyright:
© Copyright 1996
American Mathematical Society