Wiener's test for space-time random walks

and its applications

Authors:
Yasunari Fukai and Kôhei Uchiyama

Journal:
Trans. Amer. Math. Soc. **348** (1996), 4131-4152

MSC (1991):
Primary 60J15, 60J45, 31C20

DOI:
https://doi.org/10.1090/S0002-9947-96-01643-1

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper establishes a criterion for whether a -dimensional random walk on the integer lattice visits a space-time subset infinitely often or not. It is a precise analogue of Wiener's test for regularity of a boundary point with respect to the classical Dirichlet problem. The test obtained is applied to strengthen the harder half of Kolmogorov's test for the random walk.

**[E]**Erdös, P.,*On the law of the iterated logarithm*, Ann. of Math.**43**(1942), 419-436. MR**4:16j****[EG]**Evans, L.C., Gariepy, R.F.,*Wiener's criterion for the heat equation*, Arch. Rat. Mech. Anal.**78**(1982), 293-314. MR**83g:35047****[F1]**Feller, W.,*The general form of the so-called law of the iterated logarithm*, Trans. Amer. Math. Soc.**54**(1943), 373-402. MR**5:125c****[F2]**Feller, W.,*The law of the iterated logarithm for identically distributed random variables*, Ann. Math.**47**(1946), 631-638. MR**8:214h****[F3]**Feller, W.,*An introduction to probability theory and its applications*, Vol. I, 2nd ed., John Wiley and Sons (1957). MR**19:466a****[GK]**Gnedenko, B.V., Kolmogorov, A.N.,*Limit distributions for sums of independent random variables*(translated from Russian), Addison-Wesley, Reading, MA, 1954. MR**16:52d****[GL]**Garofalo, N., Lanconelli, E.,*Wiener's criterion for parabolic equations with variable coefficients and its consequences*, Trans. Amer. Math. Soc.**308**(1988), 811-836. MR**89k:35104****[IM]**Ito, K., McKean, H.P.,*Potentials and the random walk*, Illinois J. Math.**4**(1960), 119-132. MR**22:12317****[Ld]**Landis, E.M.,*Necessary and sufficient conditions for regularity of a boundary point in the Dirichlet problem for the heat-conduction equation*, Soviet Math.**10**(1969), 380-384. MR**41:7308 (of Russian original)****[Lm]**Lamperti, J.,*Wiener's test and Markov chains*, J. Math. Anal. Appl.**6**(1963), 58-66. MR**26:817****[Lv]**Lévy, P.,*Théorie de l'addition des variables aléatoires*, Paris: Gautier-Villars (1937).**[M]**Motoo, M,*Proof of the law of iterated logarithm through diffusion equation*, Ann. Inst. Statis. Math.**10**(1959), 21-28. MR**20:4331****[P]**Petrovskii, I.,*Zur ersten Randwertaufgabe der Wärmeleitungsgleichung*, Compos. Math.**1**(1935), 383-419.**[S]**Spitzer, F.,*Principles of random walk*, 2nd ed., Springer-Verlag (1976). MR**52:9383****[U]**Uchiyama, K.,*A probabilistic proof and applications of Wiener's test for the heat operator*, Math. Ann.**283**(1989), 65-86. MR**90b:60099**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
60J15,
60J45,
31C20

Retrieve articles in all journals with MSC (1991): 60J15, 60J45, 31C20

Additional Information

**Yasunari Fukai**

Affiliation:
Department of Applied Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

Email:
uchiyama@neptune.ap.titech.ac.jp

**Kôhei Uchiyama**

Affiliation:
Department of Applied Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

DOI:
https://doi.org/10.1090/S0002-9947-96-01643-1

Keywords:
Wiener's test,
random walk,
Kolmogorov's test,
discrete heat equation,
regularity of a minimal Martin boundary point

Received by editor(s):
May 10, 1995

Article copyright:
© Copyright 1996
American Mathematical Society