Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Functorial structure of units
in a tensor product


Author: David B. Jaffe
Journal: Trans. Amer. Math. Soc. 348 (1996), 4339-4353
MSC (1991): Primary 14C22, 18F20
MathSciNet review: 1361641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The behavior of units in a tensor product of rings is studied, as one factor varies. For example, let $k$ be an algebraically closed field. Let $A$ and $B$ be reduced rings containing $k$, having connected spectra. Let $u\in A\otimes _k\,B$ be a unit. Then $u=a\otimes b$ for some units $a\in A$ and $b\in B$.

Here is a deeper consequence, stated for simplicity in the affine case only. Let $k$ be a field, and let $\varphi :R\to S$ be a homomorphism of finitely generated $k$-algebras such that $\operatorname {Spec}(\varphi )$ is dominant. Assume that every irreducible component of $\operatorname {Spec}(R_{\operatorname {red}})$ or $\operatorname {Spec}(S_{\operatorname {red}})$ is geometrically integral and has a rational point. Let $B\to C$ be a faithfully flat homomorphism of reduced $k$-algebras. For $A$ a $k$-algebra, define $Q(A)$ to be $(S\otimes _k\,A)^*/(R\otimes _k\,A)^*$. Then $Q$ satisfies the following sheaf property: the sequence

\begin{displaymath}0\to Q(B)\to Q(C)\to Q(C\otimes _B\,C)\end{displaymath}

is exact. This and another result are used to prove (5.2) of [7].


References [Enhancements On Off] (What's this?)

  • 1. Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654 (50 #7132)
  • 2. M. Artin, The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 13–34. MR 0262237 (41 #6847)
  • 3. Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274458 (43 #223a)
  • 4. Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274458 (43 #223a)
  • 5. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 0199181 (33 #7330)
  • 6. -, Eléments de géométrie algébrique. I, Springer-Verlag, New York, 1971.
  • 7. R. Guralnick, D. B. Jaffe, W. Raskind and R. Wiegand, On the Picard group: torsion and the kernel induced by a faithfully flat map, J. of Algebra (to appear).
  • 8. David B. Jaffe, On sections of commutative group schemes, Compositio Math. 80 (1991), no. 2, 171–196. MR 1132092 (92j:14057)
  • 9. Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787 (34 #2647)
  • 10. Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274459 (43 #223b)
  • 11. Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443. MR 0082183 (18,514a)
  • 12. Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564 (88i:14041)
  • 13. William C. Waterhouse, The early proofs of Sylow’s theorem, Arch. Hist. Exact Sci. 21 (1979/80), no. 3, 279–290. MR 575718 (82i:01034), http://dx.doi.org/10.1007/BF00327877

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14C22, 18F20

Retrieve articles in all journals with MSC (1991): 14C22, 18F20


Additional Information

David B. Jaffe
Affiliation: Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323
Email: jaffe@cpthree.unl.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-96-01680-7
PII: S 0002-9947(96)01680-7
Received by editor(s): March 6, 1995
Additional Notes: Partially supported by the National Science Foundation
Article copyright: © Copyright 1996 American Mathematical Society