On the strong equality between supercompactness and strong compactness
Authors:
Arthur W. Apter and Saharon Shelah
Journal:
Trans. Amer. Math. Soc. 349 (1997), 103128
MSC (1991):
Primary 03E35; Secondary 03E55.
MathSciNet review:
1333385
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that supercompactness and strong compactness can be equivalent even as properties of pairs of regular cardinals. Specifically, we show that if ZFC + GCH is a given model (which in interesting cases contains instances of supercompactness), then there is some cardinal and cofinality preserving generic extension ZFC + GCH in which, (a) (preservation) for regular, if is supercompact'', then is supercompact'' and so that, (b) (equivalence) for regular, is strongly compact'' iff is supercompact'', except possibly if is a measurable limit of cardinals which are supercompact.
 [A]
Arthur
W. Apter, On the least strongly compact cardinal, Israel J.
Math. 35 (1980), no. 3, 225–233. MR 576474
(81h:03099), http://dx.doi.org/10.1007/BF02761194
 [AS]
A. Apter, S. Shelah, ``Menas' Result is Best Possible'', Trans. Amer. Math. Soc. (to appear).
 [Ba]
James
E. Baumgartner, Iterated forcing, Surveys in set theory,
London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press,
Cambridge, 1983, pp. 1–59. MR 823775
(87c:03099), http://dx.doi.org/10.1017/CBO9780511758867.002
 [Bu]
Set theory, Handbook of mathematical logic, Part B,
NorthHolland, Amsterdam, 1977, pp. 317–522. Studies in Logic
and Foundations of Math., Vol. 90. With contributions by J. R. Shoenfield,
Thomas J. Jech, Kenneth Kunen, John P. Burgess, Keith J. Devlin, Mary Ellen
Rudin and I. Juhász. MR 0540758
(58 #27475)
 [C]
James
Cummings, A model in which GCH holds at
successors but fails at limits, Trans. Amer.
Math. Soc. 329 (1992), no. 1, 1–39. MR 1041044
(92h:03076), http://dx.doi.org/10.1090/S00029947199210410449
 [CW]
J. Cummings, H. Woodin, Generalised Prikry Forcings, circulated manuscript of a forthcoming book.
 [J]
Thomas
Jech, Set theory, Academic Press [Harcourt Brace Jovanovich,
Publishers], New YorkLondon, 1978. Pure and Applied Mathematics. MR 506523
(80a:03062)
 [KaM]
A.
Kanamori and M.
Magidor, The evolution of large cardinal axioms in set theory,
Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977),
Lecture Notes in Math., vol. 669, Springer, Berlin, 1978,
pp. 99–275. MR 520190
(80b:03083)
 [KiM]
Y. Kimchi, M. Magidor, ``The Independence between the Concepts of Compactness and Supercompactness'', circulated manuscript.
 [Ma1]
Menachem
Magidor, How large is the first strongly compact cardinal? or A
study on identity crises, Ann. Math. Logic 10 (1976),
no. 1, 33–57. MR 0429566
(55 #2578)
 [Ma2]
M.
Magidor, On the role of supercompact and extendible cardinals in
logic, Israel J. Math. 10 (1971), 147–157. MR 0295904
(45 #4966)
 [Ma3]
M.
Magidor, There are many normal ultrafiltres corresponding to a
supercompact cardinal, Israel J. Math. 9 (1971),
186–192. MR 0347607
(50 #110)
 [Ma4]
M. Magidor, unpublished; personal communication.
 [Me]
Telis
K. Menas, On strong compactness and supercompactness, Ann.
Math. Logic 7 (1974/75), 327–359. MR 0357121
(50 #9589)
 [MS]
Alan
H. Mekler and Saharon
Shelah, When 𝜅free implies strongly 𝜅free,
Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York,
1987, pp. 137–148. MR 1011309
(90f:20082)
 [SRK]
Robert
M. Solovay, William
N. Reinhardt, and Akihiro
Kanamori, Strong axioms of infinity and elementary embeddings,
Ann. Math. Logic 13 (1978), no. 1, 73–116. MR 482431
(80h:03072), http://dx.doi.org/10.1016/00034843(78)900311
 [A]
 A. Apter, ``On the Least Strongly Compact Cardinal", Israel J. Math. 35, 1980, 225233. MR 81h:03099
 [AS]
 A. Apter, S. Shelah, ``Menas' Result is Best Possible'', Trans. Amer. Math. Soc. (to appear).
 [Ba]
 J. Baumgartner, ``Iterated Forcing", in: A. Mathias, ed., Surveys in Set Theory, Cambridge University Press, Cambridge, England, 1983, 159. MR 87c:03099
 [Bu]
 J. Burgess, ``Forcing", in: J. Barwise, ed., Handbook of Mathematical Logic, NorthHolland, Amsterdam, 1977, 403452. MR 58:27475
 [C]
 J. Cummings, ``A Model in which GCH Holds at Successors but Fails at Limits'', Transactions AMS 329, 1992, 139. MR 92h:03076
 [CW]
 J. Cummings, H. Woodin, Generalised Prikry Forcings, circulated manuscript of a forthcoming book.
 [J]
 T. Jech, Set Theory, Academic Press, New York, 1978. MR 80a:03062
 [KaM]
 A. Kanamori, M. Magidor, ``The Evolution of Large Cardinal Axioms in Set Theory", in: Lecture Notes in Mathematics 669, SpringerVerlag, Berlin, 1978, 99275. MR 80b:03083
 [KiM]
 Y. Kimchi, M. Magidor, ``The Independence between the Concepts of Compactness and Supercompactness'', circulated manuscript.
 [Ma1]
 M. Magidor, ``How Large is the First Strongly Compact Cardinal?", Annals Math. Logic 10, 1976, 3357. MR 55:2578
 [Ma2]
 M. Magidor, ``On the Role of Supercompact and Extendible Cardinals in Logic", Israel J. Math. 10, 1971, 147157. MR 45:4966
 [Ma3]
 M. Magidor, ``There are Many Normal Ultrafilters Corresponding to a Supercompact Cardinal", Israel J. Math. 9, 1971, 186192. MR 50:110
 [Ma4]
 M. Magidor, unpublished; personal communication.
 [Me]
 T. Menas, ``On Strong Compactness and Supercompactness", Annals Math. Logic 7, 1975, 327359. MR 50:9589
 [MS]
 A. Mekler, S. Shelah, ``When Free Implies Strongly Free", in: Proceedings of the Third Conference on Abelian Group Theory, Gordon and Breach, Salzburg, 1987, 137148. MR 90f:20082
 [SRK]
 R. Solovay, W. Reinhardt, A. Kanamori, ``Strong Axioms of Infinity and Elementary Embeddings", Annals Math. Logic 13, 1978, 73116. MR 80h:03072
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
03E35,
03E55.
Retrieve articles in all journals
with MSC (1991):
03E35,
03E55.
Additional Information
Arthur W. Apter
Affiliation:
Department of Mathematics, Baruch College of CUNY, New York, New York 10010
Email:
awabb@cunyvm.cuny.edu
Saharon Shelah
Affiliation:
Department of Mathematics, The Hebrew University, Jerusalem, Israel;
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08904
Email:
shelah@sunrise.huji.ac.il, shelah@math.rutgers.edu
DOI:
http://dx.doi.org/10.1090/S0002994797015316
PII:
S 00029947(97)015316
Keywords:
Strongly compact cardinal,
supercompact cardinal.
Received by editor(s):
May 2, 1994
Received by editor(s) in revised form:
December 30, 1994
Additional Notes:
The research of the first author was partially supported by PSCCUNY Grant 662341 and a salary grant from Tel Aviv University. In addition, the first author wishes to thank the Mathematics Departments of The Hebrew University and Tel Aviv University for the hospitality shown him during his sabbatical in Israel. The second author wishes to thank the Basic Research Fund of the Israeli Academy of Sciences for partially supporting this research, which is Publication 495 of the second author.
Article copyright:
© Copyright 1997
American Mathematical Society
