Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Every semigroup is isomorphic to a transitive semigroup of binary relations


Authors: Ralph McKenzie and Boris M. Schein
Journal: Trans. Amer. Math. Soc. 349 (1997), 271-285
MSC (1991): Primary 20M30, 20M10; Secondary 03G15, 04A05, 05C12, 08A02, 20M12, 20M20
DOI: https://doi.org/10.1090/S0002-9947-97-01708-X
MathSciNet review: 1370647
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every (finite) semigroup is isomorphic to a transitive semigroup of binary relations (on a finite set).


References [Enhancements On Off] (What's this?)

  • 1. D. A. Bredihin and B. M. Schein, Representations of ordered semigroups and lattices by binary relations, Colloquium Mathematicum 39 (1978), 1-12. MR 80c:20093
  • 2. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, American Mathematical Society, Providence, R. I., 1961. MR 24:A2627
  • 3. D. Rees, Note on semi-groups, Proceedings of the Cambridge Philosophical Society 37 (1941), 434-435. MR 3:199b
  • 4. B. M. Xa'032n, Predstavlenie polugrupp pri pomowi binarnyh otnoxeni'032, Matematicheski'032 Sbornik 60 (1963), 293-303 [B. M. Schein, Representation of semigroups by means of binary relations, Matematicheski[??]i Sbornik 60 (1963), 292-303]. MR 27:3721
  • 5. B. M. Schein, A new representation theorem on completely $[0]$-simple semigroups, Semigroup Forum 4 (1972), 312-320. MR 47:6923
  • 6. B. M. Schein, Representation of involuted semigroups by binary relations, Fundamenta Mathematicæ 82 (1974), 121-141. MR 50:2381
  • 7. A. K. Suxkevich, Teori'037 De'032stvi'037, kak Obwa'037 Teori'037 Grupp, Vorone'031, 1922
    [A. K. Suschkewitsch, ``Theory of Operation as the General Theory of Groups,'' Voronezh, 1922].
  • 8. A. K. Suschkewitsch, Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, Mathematische Annalen 99 (1928), 30-50.
  • 9. K. A. Zarecki'032, Predstavlenie upor '037dochennyh polugrupp binarnymi otnoxeni'037mi, Izvesti'037 Vysxih Uchebnyh Zavedeni'032, Matematika 1959, no. 6(13), 48-50
    [K. A. Zaretski[??]i, Representation of ordered semigroups by binary relations, Izvestiya Vysshikh Uchebnykh Zavedeni[??]i, Matematika 1959, no. 6(13), 48-50]. MR 24:A2630

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 20M30, 20M10, 03G15, 04A05, 05C12, 08A02, 20M12, 20M20

Retrieve articles in all journals with MSC (1991): 20M30, 20M10, 03G15, 04A05, 05C12, 08A02, 20M12, 20M20


Additional Information

Ralph McKenzie
Affiliation: Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, Tennessee 37240
Email: mckenzie@math.vanderbilt.edu

Boris M. Schein
Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701
Email: bschein@uafsysb.uark.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01708-X
Keywords: Semigroup of binary relations, labeled multigraph, transitive representation
Received by editor(s): September 20, 1995
Additional Notes: The first author was supported in part by NSF Grant No. DMS–9596043.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society