Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homotopy coherent category theory


Authors: Jean-Marc Cordier and Timothy Porter
Journal: Trans. Amer. Math. Soc. 349 (1997), 1-54
MSC (1991): Primary 18D20, 18D05, 18G30, 18A99
DOI: https://doi.org/10.1090/S0002-9947-97-01752-2
MathSciNet review: 1376543
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is an introduction to the categorical theory of homotopy coherence. It is based on the construction of the homotopy coherent analogues of end and coend, extending ideas of Meyer and others. The paper aims to develop homotopy coherent analogues of many of the results of elementary category theory, in particular it handles a homotopy coherent form of the Yoneda lemma and of Kan extensions. This latter area is linked with the theory of generalised derived functors.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, A variant of E.H. Brown's representability theorem, Topology, 10, (1971), 185-198. MR 44:1018
  • 2. D. W. Anderson, Axiomatic Homotopy Theory, in Algebraic Topology, Waterloo 1978, Lecture Notes in Mathematics, No. 741, Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 81c:55031
  • 3. M. André, Méthode Simpliciale en Algèbre Homologique et Algèbre Commutative, Lecture Notes in Mathematics, No. 32, Springer-Verlag, Berlin, Heidelberg, New York, (1967). MR 35:5493
  • 4. M. Artin and B. Mazur, Étale homotopy , Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin, Heidelberg, New York, (1969). MR 39:6883
  • 5. M. Artin and B. Mazur, On the van Kampen Theorem, Topology, 5, (1966), 179-189. MR 33:720
  • 6. M. Barr and J. Beck, Homology and Standard Constructions, in Seminar on Triples and Categorical Homology Theory, (B. Eckmann, ed.), Lecture Notes in Mathematics, No. 80, pp. 245-335, Springer-Verlag, Berlin, Heidelberg, New York, 1969. MR 41:3562
  • 7. M. A. Batanin, Coherent categories with respect to monads and coherent prohomotopy theory, Cahiers Top. Géom. Diff. Cat, 34, (1993), 279-304. MR 95b:18006
  • 8. H. J. Baues, Geometry of loop spaces and the cobar construction, Memoirs Amer. Math. Soc. 25, (1980), Number 230. MR 81m:55010
  • 9. H. J. Baues, Algebraic Homotopy, Cambridge Studies in Advanced Mathematics 15, Cambridge Univ. Press, (1989). MR 90i:55016
  • 10. D. Bourn and J.-M. Cordier, A general formulation of homotopy limits, J. Pure Appl. Algebra, 29, (1983), 129-141. MR 85c:55013
  • 11. A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. No. 304, Springer-Verlag, Berlin, Heidelberg, New York, (1972). MR 51:1825
  • 12. S. Bozapalides, Théorie formelle des bicatégories, thèse, 3-ème cycle, (1976), Paris. MR 57:16380
  • 13. S. Bozapalides, Some remarks on Lax presheafs, Illinois J. Math., 24, (1980), 676-680. MR 81m:18006
  • 14. K. S. Brown, Abstract homotopy theory and generalised sheaf cohomology, Trans. Amer. Math. Soc., 186, (1973), 419-458. MR 49:6220
  • 15. R. Brown and N. D. Gilbert, Algebraic Models for 3-types and automorphism structures for crossed modules, Proc. London Math. Soc., 59, (1989), 51-73. MR 90e:18015
  • 16. J.-M. Cordier, Sur la notion de diagramme homotopiquement cohérent, Cahiers Top. et Géom. Diff., 23, (1982), 93-112, Proc., 3ème Coll. sur les Catégories, Amiens, (1980). MR 83g:18018
  • 17. J.-M. Cordier, Extensions de Kan simplicialement cohérentes, Prépublications, Amiens, (1985).
  • 18. J.-M. Cordier, Sur les limites homotopiques de diagrammes homotopiquement coh[??] erents, Comp. Math., 62, (1987), 367-388. MR 88m:55029
  • 19. J.-M. Cordier, Homologie de Steenrod-Sitnikov et limite homotopique algébrique, Manuscripta Math., 59, (1987), 35-52. MR 88m:55003
  • 20. J.-M. Cordier, Comparison de deux catégories d'homotopie de morphismes cohérents, Cahiers Top. Géom. Diff. Cat., 33, (1989), 257-275. MR 91d:55005
  • 21. J.-M. Cordier and T. Porter, Vogt's theorem on categories of homotopy coherent diagrams, Math. Proc. Camb. Phil. Soc., 100, (1986), 65-90. MR 87i:55027
  • 22. J.-M. Cordier and T. Porter, Coherent Kan Extensions, (i). Simplicially Enriched Ends and Coends, U.C.N.W. Pure Maths. Preprint 86.19, (1986).
  • 23. J.-M. Cordier and T. Porter, Fibrant diagrams, rectifications and a construction of Loday, J. Pure Appl. Algebra, 67, (1990), 111-124. MR 92a:55017
  • 24. J.-M. Cordier and T. Porter, Categorical Aspects of Equivariant Homotopy, Applied Categorical Structures (to appear).
  • 25. W. G. Dwyer and D. M. Kan, Realizing diagrams in the homotopy category by means of diagrams of simplicial sets, Proc. Amer. Math. Soc., 91, (1984), 456-460. MR 86c:55010b
  • 26. W. G. Dwyer and D. M. Kan, Function complexes for diagrams of simplicial sets, Proc. Kon. Ned. Akad. Wet., 86, (1983), 139-147. MR 85e:55038
  • 27. D. A. Edwards and H. M. Hastings, \v{C}ech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Mathematics No. 542, Springer-Verlag, Berlin, Heidelberg, New York, (1976). MR 55:1347
  • 28. A. Elmendorf, Systems of Fixed Point Sets, Trans. Amer. Math. Soc, 277, (1983), 275-284. MR 84f:57029
  • 29. P. E. Gardener, Generalized Derived Functors, Thesis, University of Warwick, 1981.
  • 30. J. M. Gray, Closed categories, lax limits and homotopy limits, J. Pure Appl. Algebra, 19, (1980), 127-158. MR 82f:18007a
  • 31. A. Grothendieck, (1983), Pursuing Stacks, typed manuscript, (c.600 pages).
  • 32. B. Günther, The use of semisimplicial complexes in strong shape theory, Glasnik Mat., 27, (1992), 101-144. MR 94g:55014
  • 33. A. Heller, Homotopy in Functor Categories, Trans. Amer. Math. Soc., 272, (1982), 185-202. MR 84j:55009a
  • 34. A. Heller, Homotopy Theories, Memoirs Amer. Math. Soc. Vol. 71, No. 383, Amer. Math. Soc., Providence, R.I., (1988). MR 89b:55013
  • 35. K. H. Kamps and T. Porter, Abstract homotopy and simple homotopy theory, World Scientific, (1996?).
  • 36. G. M. Kelly, The Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Notes Series, 64, Cambridge University Press, Cambridge, (1983). MR 84e:18001
  • 37. J. T. Lisica and S. Mardesic, Coherent prohomotopy and strong shape theory, Glasnik Mat., 19, (1984), 335-399. MR 87h:55005
  • 38. S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math., Vol. 5, Springer-Verlag, Berlin, Heidelberg, New York, (1971). MR 50:7275
  • 39. S. Mardesic and J.Segal, Shape Theory, the Inverse Systems Approach, North-Holland Mathematical Library vol 26, North-Holland, Amsterdam, (1982). MR 84b:55020
  • 40. J. P. May, Classifying spaces and fibrations, Memoirs Amer. Math. Soc., Vol. 155, (1975). MR 51:6806
  • 41. J.-P. Meyer, Bar and cobar constructions, J. Pure Applied Alg., 33, (1984), 163-207. MR 86g:18010
  • 42. J.-P. Meyer, Mappings of bar constructions, Israel J. Math., 48, (1984), 331-339. MR 86a:18011
  • 43. J. E. Roberts, Mathematical aspects of local cohomology, in Proceedings of the Colloquium on Operator Algebras and their Application to Mathematical Physics, Marseille, 1977. MR 81e:18017
  • 44. C. A. Robinson, Torsion Products as Homotopy Groups, J. Pure Applied Algebra, 21, (1981), 167-182. MR 83f:18015
  • 45. D. G. Quillen, Homotopical Algebra, Lecture Notes in Mathematics, vol. 43, Springer-Verlag, Berlin, Heidelberg, New York, (1967). MR 36:6480
  • 46. G. Segal, Categories and cohomology theories, Topology, 13, (1974), 293-312. MR 50:5782
  • 47. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, (1966). MR 35:1007
  • 48. R.Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987) 283-335; also, Higher Dimensional Nerves, Notes, McGill 16 and 23 April 1985, and Weak n-categories, Notes of lectures at Bangor, June 1993. MR 89a:18019
  • 49. M. Tierney and W. Vogel, Simplicial Resolutions and Derived Functors, Math. Z. 111, (1969), 1-14. MR 40:2733
  • 50. F. Ulmer, Kan Extensions, Cotriples and André (Co)homology, in Category Theory, Homology Theory and their Applications, II, Lecture Notes in Mathematics, No. 92, (1969), 278-308. MR 41:1840b
  • 51. D. Verity, Nerves of n-categories, Notes of lectures at Bangor, 1993.
  • 52. R. M. Vogt, Homotopy Limits and Colimits, Math. Z., 134, (1973), 11-52. MR 48:9709

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 18D20, 18D05, 18G30, 18A99

Retrieve articles in all journals with MSC (1991): 18D20, 18D05, 18G30, 18A99


Additional Information

Jean-Marc Cordier
Affiliation: Faculté de Mathématiques et d’Informatique, Université de Picardie - Jules Verne, 33 rue Saint Leu, 80039 Amiens Cédex 1, France
Email: cordier@mathinfo.u-picardie.fr

Timothy Porter
Affiliation: School of Mathematics, University of Wales, Bangor, Dean Street, Bangor, Gwynedd, LL57 1UT, Wales, United Kingdom
Email: t.porter@bangor.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-97-01752-2
Keywords: Simplicially enriched categories, homotopy coherent ends and coends, Yoneda lemma
Received by editor(s): July 24, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society