Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Shadowing orbits of ordinary differential equations on invariant submanifolds


Author: Brian A. Coomes
Journal: Trans. Amer. Math. Soc. 349 (1997), 203-216
MSC (1991): Primary 34A50; Secondary 65L70
DOI: https://doi.org/10.1090/S0002-9947-97-01783-2
MathSciNet review: 1390974
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finite time shadowing theorem for autonomous ordinary differential equations is presented. Under consideration is the case were there exists a twice continuously differentiable function $g$ mapping phase space into $\mathbb {R}^{m}$ with the property that for a particular regular value $ \boldsymbol c$ of $g$ the submanifold $g^{-1}(\boldsymbol c)$ is invariant under the flow. The main theorem gives a condition which implies that an approximate solution lying close to $g^{-1}(\boldsymbol c)$ is uniformly close to a true solution lying in $g^{-1}(\boldsymbol c)$. Applications of this theorem to computer generated approximate orbits are discussed.


References [Enhancements On Off] (What's this?)

  • 1. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York, 1975, Reprinted by Dover, New York, 1987.
  • 2. D. V. Anosov, Geodesic flows and closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967). MR 36:7157
  • 3. R. Bowen, $\omega $-limit sets for Axiom A diffeomorphisms, J. Differential Equations 18 (1975), 333-339. MR 54:1300
  • 4. S. N. Chow and K. J. Palmer, On the numerical computation of orbits of dynamical systems: the one-dimensional case, J. Dynamics and Differential Equations 3 (1991), 361-379. MR 92h:58057
  • 5. -, On the numerical computation of orbits of dynamical systems: the higher dimensional case, J. Complexity 8 (1992), 398-423. MR 93k:65118
  • 6. S. N. Chow and E. Van Vleck, A shadowing lemma approach to global error analysis for initial value ODE's, SIAM J. Sci. Comput. 15 (1994), 959-976. MR 95c:65096
  • 7. B. A. Coomes, H. Koçak, and K. J. Palmer, Shadowing orbits of ordinary differential equations, J. Comp. Appl. Math. 53 (1994), 35-43. MR 95j:58145
  • 8. -, Periodic shadowing, Chaotic Numerics, Proceedings of Chaotic Numerics: An International Workshop on the Approximation and Computation of Complicated Dynamical Behavior, Contemporary Mathematics series, vol. 172, American Mathematical Society, Providence, Rhode Island, 1994, pp. 115-130. MR 95i:58128
  • 9. -, A shadowing theorem for ordinary differential equations, Z. Angew. Math. Phys. 46 (1995), 85-106. MR 96b:58085
  • 10. -, Rigorous computational shadowing of orbits of ordinary differential equations, Numer. Math. 69 (1995), 401-421. MR 96g:34014
  • 11. -, Shadowing in discrete dynamical systems, Six Lectures on Dynamical Systems, World Scientific, Singapore, 1996, pp. 163-212.
  • 12. S. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Obstructions to shadowing when a Lyapunov exponent fluctuates about zero, Phys. Rev. Lett. 73 (1994), 1927-1930.
  • 13. J. E. Franke and J. F. Selgrade, Hyperbolicity and chain recurrence, J. Differential Equations 26 (1977), 27-36. MR 57:7685
  • 14. E. A. González Velasco, Generic properties of polynomial vector fields at infinity, Trans. Amer. Math. Soc. 143 (1969), 201-222. MR 40:6005
  • 15. S. H. Hammel, J. A. Yorke, and C. Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, J. Complexity 3 (1987), 136-145. MR 88m:58115
  • 16. -, Numerical orbits of chaotic dynamical processes represent true orbits, Bull. Amer. Math. Soc. 19 (1988), 465-470. MR 89m:58180
  • 17. A. Nath and D. S. Ray, Horseshoe-shaped maps in chaotic dynamics of atom-field interaction, Phys. Rev. A 36 (1987), 431-434.
  • 18. H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Mathématiques (3) 7 (1881), 375-422.
  • 19. T. Sauer and J. A. Yorke, Rigorous verification of trajectories for computer simulations of dynamical systems, Nonlinearity 4 (1991), 961-979. MR 93a:58104

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34A50, 65L70

Retrieve articles in all journals with MSC (1991): 34A50, 65L70


Additional Information

Brian A. Coomes
Affiliation: Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124
Email: coomes@math.miami.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01783-2
Keywords: Ordinary differential equations, shadowing, Hamiltonian systems, first integrals, invariant manifolds
Received by editor(s): May 17, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society