Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the Ornstein-Uhlenbeck operator in $L^2$ spaces with respect to invariant measures


Author: Alessandra Lunardi
Journal: Trans. Amer. Math. Soc. 349 (1997), 155-169
MSC (1991): Primary 35J15; Secondary 35K10
MathSciNet review: 1389786
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a class of elliptic and parabolic differential operators with unbounded coefficients in $\mathbb R^n$, and we study the properties of the realization of such operators in suitable weighted $L^2$ spaces.


References [Enhancements On Off] (What's this?)

  • 1. D. G. Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations 3 (1967), 1–14. MR 0208160
  • 2. P. Besala, On the existence of a fundamental solution for a parabolic differential equation with unbounded coefficients, Ann. Polon. Math. 29 (1975), no. 4, 403–409. Collection of articles dedicated to the memory of Tadeusz Ważewski, IV. MR 0422862
  • 3. Piermarco Cannarsa and Vincenzo Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients, SIAM J. Math. Anal. 18 (1987), no. 3, 857–872. MR 883572, 10.1137/0518063
  • 4. G. Da Prato, A. Lunardi: On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. CMP 95:16
  • 5. Sandra Cerrai, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum 49 (1994), no. 3, 349–367. MR 1293091, 10.1007/BF02573496
  • 6. M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1984. Translated from the Russian by Joseph Szücs. MR 722136
  • 7. M. Fuhrman: Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces, preprint Dip. Mat. Politecnico di Milano (1993).
  • 8. A. Lunardi: Schauder estimates for a class of elliptic and parabolic operators with unbounded coefficients in $\mathbb R^n$, preprint Sc. Norm. Sup. Pisa (1994).
  • 9. A. Lunardi, V. Vespri: Generation of smoothing semigroups in $L^p$ spaces by elliptic operators with unbounded coefficients, in preparation.
  • 10. Jan Prüss and Hermann Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), no. 3, 429–452. MR 1038710, 10.1007/BF02570748
  • 11. H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35J15, 35K10

Retrieve articles in all journals with MSC (1991): 35J15, 35K10


Additional Information

Alessandra Lunardi
Affiliation: Dipartimento di Matematica, Università di Parma, Via D’Azeglio 85/A, 43100, Parma, Italy
Email: lunardi@prmat.math.unipr.it

DOI: http://dx.doi.org/10.1090/S0002-9947-97-01802-3
Keywords: Elliptic operators with unbounded coefficients, semigroups, interpolation spaces
Received by editor(s): February 20, 1995
Article copyright: © Copyright 1997 American Mathematical Society