Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Integration of Correspondences on Loeb Spaces

Author: Yeneng Sun
Journal: Trans. Amer. Math. Soc. 349 (1997), 129-153
MSC (1991): Primary 03H05, 28B20; Secondary 46G10, 90A14
MathSciNet review: 1401529
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Bochner and Gel$^{\prime }$fand integration of Banach space valued correspondences on a general Loeb space. Though it is well known that the Lyapunov type result on the compactness and convexity of the integral of a correspondence and the Fatou type result on the preservation of upper semicontinuity by integration are in general not valid in the setting of an infinite dimensional space, we show that exact versions of these two results hold in the case we study. We also note that our results on a hyperfinite Loeb space capture the nature of the corresponding asymptotic results for the large finite case; but the unit Lebesgue interval fails to provide such a framework.

References [Enhancements On Off] (What's this?)

  • 1. S. Albeverio, J. E. Fenstad, R. Hoegh-Krohn, and T. L. Lindstrom, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, Florida, 1986. MR 88f:03061
  • 2. R. M. Anderson, Star-finite representations of measure spaces, Transactions of the American Mathematical Society 271 (1982), 667-687. MR 83m:03077
  • 3. Z. Artstein, Distributions of random sets and random selections, Israel Journal of Mathematics 46 (1983), 313-324. MR 85m:60017
  • 4. J.-P. Aubin and H. Frankowska, Set Valued Analysis, Birkhäuser, Boston, 1990. MR 91d:49001
  • 5. R. J. Aumann, Markets with a continuum of traders, Econometrica 32 (1964), 39-50. MR 30:2908
  • 6. -, Integrals of set valued functions, Journal of Mathematical Analysis and Applications 12 (1965), 1-12. MR 32:2543
  • 7. E. J. Balder, Fatou's lemma in infinite dimensions, Journal of Mathematical Analysis and Applications 136 (1988), 450-465. MR 90e:28012
  • 8. C. Berge, Topological Spaces, Oliver & Boyd, London, 1959. MR 21:4401 (French ed.)
  • 9. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. MR 38:1718
  • 10. C. L. Byrne, Remarks on the set-valued integrals of Debreu and Aumann, Journal of Mathematical Analysis and Applications 62 (1978), 243-246. MR 80a:28006
  • 11. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin and New York, 1977. MR 57:7169
  • 12. G. Debreu, Integration of correspondences, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, part 1, Univ. of California Press, 1967, pp. 351-372. MR 37:3835
  • 13. J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys, vol. 15, American Mathematical Society, Providence, RI, 1977. MR 56:12216
  • 14. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958. MR 22:8302
  • 15. Ky Fan, Fixed-point and minimax theorems in locally convex linear spaces, Proceedings of the National Academy of Sciences of the USA 38 (1952), 121-126. MR 13:858d
  • 16. I. Glicksberg, A further generalization of Kakutani's fixed point theorem with application to Nash equilibrium points, Proceedings of the American Mathematical Society 3 (1952), 170-174. MR 13:764g
  • 17. S. Hart, W. Hildenbrand, and E. Kohlberg, On equilibrium allocations as distributions on the commodity space, Journal of Mathematical Economics 1 (1974), 159-166. MR 55:9863
  • 18. S. Hart and E. Kohlberg, Equally distributed correspondences, Journal of Mathematical Economics 1 (1974), 167-174. MR 54:10540
  • 19. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, Journal of Multivariate Analysis 7 (1977), 149-182. MR 58:22463
  • 20. W. Hildenbrand, Core and Equilibria of a Large Economy, Princeton University Press, Princeton, 1974. MR 52:9991
  • 21. R. B. Holmes, Geometric Functional Analysis and Its Applications, Springer-Verlag, New York, 1975. MR 53:10485
  • 22. A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, Orlando, Florida, 1985. MR 87d:03184
  • 23. R. James, Weakly compact sets, Transactions of the American Mathematical Society 113 (1964), 129-140. MR 29:2628
  • 24. -, A counterexample for a sup theorem in normed spaces, Israel Journal of Mathematics 9 (1971), 511-512. MR 43:5287
  • 25. M. A. Khan, On the integration of set-valued mappings in a non-reflexive Banach space, II, Simon Stevin 59 (1985), 257-267. MR 87g:28009
  • 26. M. A. Khan and M. Majumdar, Weak sequential convergence in $L_{1}(\mu , X)$ and an approximate version of Fatou's lemma, Journal of Mathematical Analysis and Applications 114 (1986), 569-573. MR 87m:28004
  • 27. M. A. Khan and Y. N. Sun, Non-cooperative games on hyperfinite Loeb spaces, submitted.
  • 28. M. A. Khan and Y. N. Sun, General equilibrium theory with a Loeb space of agents, presented at the Workshop on Geometry, Topology and Markets at the Fields Institute for Research in Mathematical Sciences in July 1994.
  • 29. E. Klein and A. C. Thompson, Theory of Correspondences, Wiley, New York, 1984. MR 86a:90012
  • 30. G. Knowles, Lyapunov vector measures, SIAM J. Control 13 (1975), 294-303. MR 52:9053
  • 31. P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Transactions of the American Mathematical Society 211 (1975), 113-122. MR 52:10980
  • 32. C. Olech, Existence theory in optimal control, Control Theory and Topics in Functional Analysis, International Atomic Energy Agency, Vienna, 1976, pp. 291-328. MR 58:23858
  • 33. H. Osswald and Y. N. Sun, On the extensions of vector-valued Loeb measures, Proceedings of the American Mathematical Society 111 (1991), 663-675. MR 92g:28041
  • 34. K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. MR 37:2271
  • 35. P. Pucci and G. Vitillaro, A representation theorem for Aumann integrals, Journal of Mathematical Analysis and Applications 102 (1984), 86-101. MR 86d:28016
  • 36. S. Rashid, Economies with Many Agents: An Approach Using Nonstandard Analysis, Johns Hopkins University, Baltimore, 1987. MR 90h:90041
  • 37. H. Richter, Verallgemeinerung eines in der Statictik benötigten Satzes der Masstheorie, Mathematische Annalen 150 (1963), 85-90. MR 26:3851
  • 38. A. Rustichini, A counterexample and an exact version of Fatou's lemma in infinite dimensional spaces, Archiv der Mathematik 52 (1989), 357-362. MR 90k:46101
  • 39. A. Rustichini and N. Yannelis, What is perfection competition?, Equilibrium Theory in Infinite Dimensional Spaces (M. A. Khan and N. C. Yannelis, eds.), Springer-Verlag, Berlin, 1991.
  • 40. D. Schmeidler, Fatou's lemma in several dimensions, Proceedings of the American Mathematical Society 24 (1970), 300-306. MR 40:1568
  • 41. Y. N. Sun, Nonstandard theory of vector measures, Ph.D. dissertation, University of Illinois, Urbana, Illinois, 1989.
  • 42. -, On the theory of vector valued Loeb measures and integration, Journal of Functional Analysis 104 (1992), 327-362. MR 93a:46146
  • 43. -, Distributional properties of correspondences on Loeb spaces, Journal of Functional Analysis 139 (1996), 68-93. CMP 96:15
  • 44. D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control and Optimization 15 (1977), 859-903. MR 58:6137
  • 45. N. C. Yannelis, On the upper and lower semicontinuity of the Aumann integral, Journal of Mathematical Economics 19 (1990), 373-389. MR 92d:26021
  • 46. -, Integration of Banach-valued correspondences, Equilibrium Theory in Infinite Dimensional Spaces (M. A. Khan and N. C. Yannelis, eds.), Springer-Verlag, Berlin, 1991.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 03H05, 28B20, 46G10, 90A14

Retrieve articles in all journals with MSC (1991): 03H05, 28B20, 46G10, 90A14

Additional Information

Yeneng Sun
Affiliation: Department of Mathematics, National University of Singapore, Singapore 119260
Address at time of publication: Cowles Foundation, Yale University, New Haven, Connecticut 06520

Keywords: Correspondences, Loeb spaces, Bochner integral, Gel$^{\prime }$fand integral, convexity, semicontinuity, weak compactness, weak$^{*}$ compactness
Received by editor(s): February 23, 1995
Additional Notes: The main results were presented at the Fifth Asian Logic Conference held in Singapore in June 1993. The author is grateful to Professors Robert Anderson, Donald Burkholder, Chi Tat Chong, Ward Henson, Zhuxin Hu, Jerome Keisler, Ali Khan, Peter Loeb, Walter Trockel, and Jerry Uhl for helpful conversations and encouragement. The research is partially supported by the National University of Singapore, grant no. RP3920641.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society