Symmetric powers of complete modules over a two-dimensional regular local ring

Authors:
Daniel Katz and Vijay Kodiyalam

Journal:
Trans. Amer. Math. Soc. **349** (1997), 747-762

MSC (1991):
Primary 13B21, 13B22, 13H05, 13H15

MathSciNet review:
1401523

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a two-dimensional regular local ring with infinite residue field. For a finitely generated, torsion-free -module , write for the th symmetric power of , mod torsion. We study the modules , , when is complete (i.e., integrally closed). In particular, we show that , for any minimal reduction and that the ring is Cohen-Macaulay.

**[BV]**Winfried Bruns and Udo Vetter,*Determinantal rings*, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR**953963****[BR]**David A. Buchsbaum and Dock S. Rim,*A generalized Koszul complex. II. Depth and multiplicity*, Trans. Amer. Math. Soc.**111**(1964), 197–224. MR**0159860**, 10.1090/S0002-9947-1964-0159860-7**[C1]**Steven Dale Cutkosky,*A new characterization of rational surface singularities*, Invent. Math.**102**(1990), no. 1, 157–177. MR**1069245**, 10.1007/BF01233425**[C2]**Steven Dale Cutkosky,*On unique and almost unique factorization of complete ideals. II*, Invent. Math.**98**(1989), no. 1, 59–74. MR**1010155**, 10.1007/BF01388844**[H]**Craig Huneke,*Complete ideals in two-dimensional regular local rings*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 325–338. MR**1015525**, 10.1007/978-1-4612-3660-3_16**[HS]**Craig Huneke and Judith D. Sally,*Birational extensions in dimension two and integrally closed ideals*, J. Algebra**115**(1988), no. 2, 481–500. MR**943272**, 10.1016/0021-8693(88)90274-8**[Kap]**Irving Kaplansky,*Commutative rings*, Revised edition, The University of Chicago Press, Chicago, Ill.-London, 1974. MR**0345945****[Ko]**Vijay Kodiyalam,*Integrally closed modules over two-dimensional regular local rings*, Trans. Amer. Math. Soc.**347**(1995), no. 9, 3551–3573. MR**1308016**, 10.1090/S0002-9947-1995-1308016-0**[L]**Joseph Lipman,*Rational singularities, with applications to algebraic surfaces and unique factorization*, Inst. Hautes Études Sci. Publ. Math.**36**(1969), 195–279. MR**0276239****[LT]**Joseph Lipman and Bernard Teissier,*Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals*, Michigan Math. J.**28**(1981), no. 1, 97–116. MR**600418****[R]**D. Rees,*Reduction of modules*, Math. Proc. Cambridge Philos. Soc.**101**(1987), no. 3, 431–449. MR**878892**, 10.1017/S0305004100066810**[Z]**O. Zariski,*Polynomial ideals defined by infinitely near base-points*, Amer. J. Math.**60**(1938), 151-204.**[ZS]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
13B21,
13B22,
13H05,
13H15

Retrieve articles in all journals with MSC (1991): 13B21, 13B22, 13H05, 13H15

Additional Information

**Daniel Katz**

Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045

Email:
dlk@math.ukans.edu

**Vijay Kodiyalam**

Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045

Address at time of publication:
Vijay Kodiyalam, Institute of Mathematical Sciences, Tharamani, Madras 600 113, India

Email:
vijay@imsc.ernet.in

DOI:
https://doi.org/10.1090/S0002-9947-97-01819-9

Received by editor(s):
March 28, 1995

Additional Notes:
The first author was partially supported by the General Research Fund at the University of Kansas

Article copyright:
© Copyright 1997
American Mathematical Society