Tangential flatness and global rigidity

of higher rank lattice actions

Author:
Nantian Qian

Journal:
Trans. Amer. Math. Soc. **349** (1997), 657-673

MSC (1991):
Primary 22E40, 58E40

MathSciNet review:
1401783

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the continuous tangential flatness for orientable

weakly Cartan actions of higher rank lattices. As a corollary, we obtain the global rigidity of Anosov Cartan actions.

**[A]**D. V. Anosov,*Geodesic flows on closed Riemannian manifolds of negative curvature*, Trudy Mat. Inst. Steklov.**90**(1967), 209 (Russian). MR**0224110****[BP]**M. I. Brin and Ja. B. Pesin,*Partially hyperbolic dynamical systems*, Izv. Akad. Nauk SSSR Ser. Mat.**38**(1974), 170–212 (Russian). MR**0343316****[F]**R. Feres,*Actions of discrete linear groups and Zimmer's conjecture*, J. Differential Geom.**42**(3) (1995), 554-576. CMP**96:06****[Har]**Philip Hartman,*Ordinary differential equations*, S. M. Hartman, Baltimore, Md., 1973. Corrected reprint. MR**0344555****[HP]**Morris W. Hirsch and Charles C. Pugh,*Stable manifolds and hyperbolic sets*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR**0271991****[Hu1]**Steven Hurder,*Rigidity for Anosov actions of higher rank lattices*, Ann. of Math. (2)**135**(1992), no. 2, 361–410. MR**1154597**, 10.2307/2946593**[Hu2]**Steven Hurder,*Topological rigidity of strong stable foliations for Cartan actions*, Ergodic Theory Dynam. Systems**14**(1994), no. 1, 151–167. MR**1268714**, 10.1017/S014338570000777X**[KL1]**A. Katok and J. Lewis,*Local rigidity for certain groups of toral automorphisms*, Israel J. Math.**75**(1991), no. 2-3, 203–241. MR**1164591**, 10.1007/BF02776025**[KL2]**-,*Global rigidity results for lattice actions on tori and new examples of volume-preserving actions*, Israel J. Math.**93**(1996), 253-280. CMP**96:10****[KLZ]**A. Katok, J. Lewis and R. Zimmer,*Cocycle superrigidity and Rigidity for lattice actions on tori*, Topology**35**(1) (1996), 27-38. CMP**96:06****[L]**J. Lewis,*The algebraic hull of the derivative cocycle*, Preprint (1993).**[Li]**A. N. Livšic,*Cohomology of dynamical systems*, Izv. Akad. Nauk SSSR Ser. Mat.**36**(1972), 1296–1320 (Russian). MR**0334287****[M]**G. D. Mostow,*personal communication*, 1994.**[PY]**J. Palis and J.-C. Yoccoz,*Centralizers of Anosov diffeomorphisms on tori*, Ann. Sci. École Norm. Sup. (4)**22**(1989), no. 1, 99–108. MR**985856****[PR]**Gopal Prasad and M. S. Raghunathan,*Cartan subgroups and lattices in semi-simple groups*, Ann. of Math. (2)**96**(1972), 296–317. MR**0302822****[Q1]**Nan Tian Qian,*Anosov automorphisms for nilmanifolds and rigidity of group actions*, Ergodic Theory Dynam. Systems**15**(1995), no. 2, 341–359. MR**1332408**, 10.1017/S0143385700008415**[Q2]**-,*Smooth conjugacy for Anosov diffeomorphisms and rigidity of Anosov actions of higher rank lattices*, Preprint.**[QZ]**N. Qian and R.J. Zimmer,*Entropy rigidity for semisimple group actions*, to appear Israel J. Math.**[S]**Dennis Stowe,*The stationary set of a group action*, Proc. Amer. Math. Soc.**79**(1980), no. 1, 139–146. MR**560600**, 10.1090/S0002-9939-1980-0560600-2**[T]**W. Thurston,*The geometry and topology of 3-manifolds*, Lecture notes, Princeton.**[W]**H. Weyl,*The structure and representation of continuous groups*, Institute for Advanced Studies, 1934.**[Z1]**Robert J. Zimmer,*Orbit equivalence and rigidity of ergodic actions of Lie groups*, Ergodic Theory Dynamical Systems**1**(1981), no. 2, 237–253. MR**661822****[Z2]**Robert J. Zimmer,*Ergodic theory and semisimple groups*, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR**776417****[Z3]**Robert J. Zimmer,*Actions of semisimple groups and discrete subgroups*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1247–1258. MR**934329****[Z4]**Robert J. Zimmer,*On the algebraic hull of an automorphism group of a principal bundle*, Comment. Math. Helv.**65**(1990), no. 3, 375–387. MR**1069815**, 10.1007/BF02566614**[Z5]**-,*Actions of simple Lie groups*, in Workshop on Lie groups, ergodic theory and geometry and problems in geometric rigidity, 1992.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
22E40,
58E40

Retrieve articles in all journals with MSC (1991): 22E40, 58E40

Additional Information

**Nantian Qian**

Affiliation:
Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520

Email:
qian@math.yale.edu

DOI:
https://doi.org/10.1090/S0002-9947-97-01857-6

Keywords:
Rigidity of group actions,
Lie groups,
dynamical systems

Received by editor(s):
December 13, 1994

Article copyright:
© Copyright 1997
American Mathematical Society