Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Tangential flatness and global rigidity
of higher rank lattice actions


Author: Nantian Qian
Journal: Trans. Amer. Math. Soc. 349 (1997), 657-673
MSC (1991): Primary 22E40, 58E40
MathSciNet review: 1401783
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the continuous tangential flatness for orientable
weakly Cartan actions of higher rank lattices. As a corollary, we obtain the global rigidity of Anosov Cartan actions.


References [Enhancements On Off] (What's this?)

  • [A] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
  • [BP] M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 170–212 (Russian). MR 0343316
  • [F] R. Feres, Actions of discrete linear groups and Zimmer's conjecture, J. Differential Geom. 42 (3) (1995), 554-576. CMP 96:06
  • [Har] Philip Hartman, Ordinary differential equations, S. M. Hartman, Baltimore, Md., 1973. Corrected reprint. MR 0344555
  • [HP] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
  • [Hu1] Steven Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. (2) 135 (1992), no. 2, 361–410. MR 1154597, 10.2307/2946593
  • [Hu2] Steven Hurder, Topological rigidity of strong stable foliations for Cartan actions, Ergodic Theory Dynam. Systems 14 (1994), no. 1, 151–167. MR 1268714, 10.1017/S014338570000777X
  • [KL1] A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203–241. MR 1164591, 10.1007/BF02776025
  • [KL2] -, Global rigidity results for lattice actions on tori and new examples of volume-preserving actions, Israel J. Math. 93 (1996), 253-280. CMP 96:10
  • [KLZ] A. Katok, J. Lewis and R. Zimmer, Cocycle superrigidity and Rigidity for lattice actions on tori, Topology 35 (1) (1996), 27-38. CMP 96:06
  • [L] J. Lewis, The algebraic hull of the derivative cocycle, Preprint (1993).
  • [Li] A. N. Livšic, Cohomology of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1296–1320 (Russian). MR 0334287
  • [M] G. D. Mostow, personal communication, 1994.
  • [PY] J. Palis and J.-C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 99–108. MR 985856
  • [PR] Gopal Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. (2) 96 (1972), 296–317. MR 0302822
  • [Q1] Nan Tian Qian, Anosov automorphisms for nilmanifolds and rigidity of group actions, Ergodic Theory Dynam. Systems 15 (1995), no. 2, 341–359. MR 1332408, 10.1017/S0143385700008415
  • [Q2] -, Smooth conjugacy for Anosov diffeomorphisms and rigidity of Anosov actions of higher rank lattices, Preprint.
  • [QZ] N. Qian and R.J. Zimmer, Entropy rigidity for semisimple group actions, to appear Israel J. Math.
  • [S] Dennis Stowe, The stationary set of a group action, Proc. Amer. Math. Soc. 79 (1980), no. 1, 139–146. MR 560600, 10.1090/S0002-9939-1980-0560600-2
  • [T] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton.
  • [W] H. Weyl, The structure and representation of continuous groups, Institute for Advanced Studies, 1934.
  • [Z1] Robert J. Zimmer, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory Dynamical Systems 1 (1981), no. 2, 237–253. MR 661822
  • [Z2] Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417
  • [Z3] Robert J. Zimmer, Actions of semisimple groups and discrete subgroups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1247–1258. MR 934329
  • [Z4] Robert J. Zimmer, On the algebraic hull of an automorphism group of a principal bundle, Comment. Math. Helv. 65 (1990), no. 3, 375–387. MR 1069815, 10.1007/BF02566614
  • [Z5] -, Actions of simple Lie groups, in Workshop on Lie groups, ergodic theory and geometry and problems in geometric rigidity, 1992.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22E40, 58E40

Retrieve articles in all journals with MSC (1991): 22E40, 58E40


Additional Information

Nantian Qian
Affiliation: Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520
Email: qian@math.yale.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-97-01857-6
Keywords: Rigidity of group actions, Lie groups, dynamical systems
Received by editor(s): December 13, 1994
Article copyright: © Copyright 1997 American Mathematical Society