Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strassen theorems for a class of
iterated processes


Authors: Endre Csáki, Antónia Földes and Pál Révész
Journal: Trans. Amer. Math. Soc. 349 (1997), 1153-1167
MSC (1991): Primary 60J65; Secondary 60F15, 60F17
DOI: https://doi.org/10.1090/S0002-9947-97-01717-0
MathSciNet review: 1373631
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general direct Strassen theorem is proved for a class of stochastic processes and applied for iterated processes such as $W(L_t)$, where $W(\cdot )$ is a standard Wiener process and $L_.$ is a local time of a Lévy process independent from $W(\cdot )$.


References [Enhancements On Off] (What's this?)

  • 1. M. A. Arcones, On the law of the iterated logarithm for Gaussian processes and their compositions, J. Theor. Probab. 8 (1995), 877-903. CMP 96:2
  • 2. J. Bertoin, Iterated Brownian motion and stable (1/4) subordinator, Statist. Probab. Letters 27 (1996), 111-114.
  • 3. K. Burdzy, Some path properties of iterated Brownian motion, in: E. Çinlar, K.L. Chung and M. Sharpe, eds., Seminar on Stochastic Processes (Birkhäuser, Boston, 1993), pp. 67-87. MR 95c:60075
  • 4. K. Burdzy, Variation of iterated Brownian motion, in: D.A. Dawson, ed., Measure-Valued Processes, Stochastic Partial Differential Equations and Interacting Systems, CRM Proceedings & Lecture Notes, Vol. 5 (1994), 35-53. MR 95h:60123
  • 5. E. Csáki, M. Csörg\H{o}, A. Földes and P. Révész, Brownian local time approximated by a Wiener sheet, Ann. Probab. 17 (1989), 516-537. MR 95h:60102
  • 6. E. Csáki, M. Csörg\H{o}, A. Földes and P. Révész, Strong approximation of additive functionals, J. Theor. Probab. 5 (1992), 679-706. MR 93k:60073
  • 7. E. Csáki, M. Csörg\H{o}, A. Földes and P. Révész, Global Strassen-type theorems for iterated Brownian motions, Stochastic Proc. Appl. 59 (1995), 321-341. CMP 96:3
  • 8. M. Csörg\H{o} and P. Révész, Strong Approximations in Probability and Statistics (Academic Press, New York, 1981). MR 84d:60050
  • 9. C. Dellacherie and P. A. Meyer, Probabilities and Potential, Vol. 1 (North-Holland, Amsterdam, 1978). MR 80b:60004
  • 10. Y. Hu, D. Pierre-Loti-Viaud and Z. Shi, Laws of the iterated logarithm for iterated Wiener processes, J. Theor. Probab. 8 (1995), 303-319. MR 96b:60073
  • 11. Y. Hu and Z. Shi, The Csörg\H{o}-Révész modulus of non-differentiability of iterated Brownian motion, Stochastic Proc. Appl. 58 (1995), 267-279. CMP 95:17
  • 12. D. Khoshnevisan, The rate of convergence in the ratio ergodic theorem for Markov processes, Preprint, 1995.
  • 13. D. Khoshnevisan and T. M. Lewis, The uniform modulus of continuity of iterated Brownian motion, J. Theor. Probab. 9 (1996), 317-333.
  • 14. D. Khoshnevisan and T. M. Lewis, Chung's law of the iterated logarithm for iterated Brownian motion, Ann. Inst. H. Poincarè 32 (1996), 349-359.
  • 15. D. Khoshnevisan, T. M. Lewis and Z. Shi, Upper functions of iterated Brownian motion, Preprint, 1994.
  • 16. M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks, Ann. Probab. 22 (1994), 626-658. MR 95k:60190
  • 17. Z. Shi, Lower limits of iterated Wiener processes, Statist. Probab. Letters 23 (1995), 259-270. CMP 95:15
  • 18. Z. Shi, Liminf results for self-iterated Brownian motion, Preprint, 1994.
  • 19. F. Riesz and B. Sz.-Nagy, Functional Analysis (Frederick Ungar, New York, 1955). MR 17:175i
  • 20. V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete 3 (1964), 211-226. MR 30:5379

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 60J65, 60F15, 60F17

Retrieve articles in all journals with MSC (1991): 60J65, 60F15, 60F17


Additional Information

Endre Csáki
Affiliation: Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary
Email: csaki@novell.math-inst.hu

Antónia Földes
Affiliation: College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island, New York 10314
Email: foldes@postbox.csi.cuny.edu

Pál Révész
Affiliation: Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, A-1040 Wien, Austria
Email: revesz@ci.tuwien.ac.at

DOI: https://doi.org/10.1090/S0002-9947-97-01717-0
Keywords: Iterated Brownian motions, iterated processes, Strassen method, local times
Received by editor(s): August 3, 1995
Additional Notes: The first author was supported by the Hungarian National Foundation for Scientific Research, Grant No. T 016384 and T 019346
The second author was supported by a PSC CUNY Grant, No. 6-663642
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society