Anticanonical Rational Surfaces

Author:
Brian Harbourne

Journal:
Trans. Amer. Math. Soc. **349** (1997), 1191-1208

MSC (1991):
Primary 14C20, 14J26; Secondary 14M20, 14N05

MathSciNet review:
1373636

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A determination of the fixed components, base points and irregularity is made for arbitrary numerically effective divisors on any smooth projective rational surface having an effective anticanonical divisor. All of the results are proven over an algebraically closed field of arbitrary characteristic. Applications, to be treated in separate papers, include questions involving: points in good position, birational models of rational surfaces in projective space, and resolutions for 0-dimensional subschemes of defined by complete ideals.

**[A]**Michael Artin,*Some numerical criteria for contractability of curves on algebraic surfaces*, Amer. J. Math.**84**(1962), 485–496. MR**0146182****[Cn]**F. Catanese,*Pluricanonical Gorenstein curves*, preprint.**[Co]**Ciro Ciliberto,*On the degree and genus of smooth curves in a projective space*, Adv. Math.**81**(1990), no. 2, 198–248. MR**1055647**, 10.1016/0001-8708(90)90009-C**[D]**Michel Demazure, Henry Charles Pinkham, and Bernard Teissier (eds.),*Séminaire sur les Singularités des Surfaces*, Lecture Notes in Mathematics, vol. 777, Springer, Berlin, 1980 (French). Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977. MR**579026****[F]**Robert Friedman and David R. Morrison (eds.),*The birational geometry of degenerations*, Progress in Mathematics, vol. 29, Birkhäuser, Boston, Mass., 1983. Based on papers presented at the Summer Algebraic Geometry Seminar held at Harvard University, Cambridge, Mass. June 11–July 29, 1981. MR**690261****[H1]**Brian Harbourne,*Complete linear systems on rational surfaces*, Trans. Amer. Math. Soc.**289**(1985), no. 1, 213–226. MR**779061**, 10.1090/S0002-9947-1985-0779061-2**[H2]**Brian Harbourne,*Very ample divisors on rational surfaces*, Math. Ann.**272**(1985), no. 1, 139–153. MR**794097**, 10.1007/BF01455934**[H3]**Brian Harbourne,*Blowings-up of 𝑃² and their blowings-down*, Duke Math. J.**52**(1985), no. 1, 129–148. MR**791295**, 10.1215/S0012-7094-85-05208-1**[H4]**Brian Harbourne,*Automorphisms of 𝐾3-like rational surfaces*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 17–28. MR**927971****[H5]**Brian Harbourne,*Automorphisms of cuspidal 𝐾3-like surfaces*, Algebraic geometry: Sundance 1988, Contemp. Math., vol. 116, Amer. Math. Soc., Providence, RI, 1991, pp. 47–60. MR**1108631**, 10.1090/conm/116/1108631**[H6]**Brian Harbourne,*Rational surfaces with 𝐾²>0*, Proc. Amer. Math. Soc.**124**(1996), no. 3, 727–733. MR**1307526**, 10.1090/S0002-9939-96-03226-1**[Ha]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[J]**Jean-Pierre Jouanolou,*Théorèmes de Bertini et applications*, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 (French). MR**725671****[M]**Yu. I. Manin,*Cubic forms*, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR**833513****[Ma]**Alan L. Mayer,*Families of 𝐾-3 surfaces*, Nagoya Math. J.**48**(1972), 1–17. MR**0330172****[PS]**I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič,*Torelli’s theorem for algebraic surfaces of type 𝐾3*, Izv. Akad. Nauk SSSR Ser. Mat.**35**(1971), 530–572 (Russian). MR**0284440****[SD]**B. Saint-Donat,*Projective models of 𝐾-3 surfaces*, Amer. J. Math.**96**(1974), 602–639. MR**0364263****[Sk]**Fumio Sakai,*Anticanonical models of rational surfaces*, Math. Ann.**269**(1984), no. 3, 389–410. MR**761313**, 10.1007/BF01450701**[St]**Hans Sterk,*Finiteness results for algebraic 𝐾3 surfaces*, Math. Z.**189**(1985), no. 4, 507–513. MR**786280**, 10.1007/BF01168156**[U]**Tohsuke Urabe,*On singularities on degenerate del Pezzo surfaces of degree 1, 2*, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R.I., 1983, pp. 587–591. MR**713283**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
14C20,
14J26,
14M20,
14N05

Retrieve articles in all journals with MSC (1991): 14C20, 14J26, 14M20, 14N05

Additional Information

**Brian Harbourne**

Affiliation:
Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0323

Email:
bharbourne@unl.edu

DOI:
https://doi.org/10.1090/S0002-9947-97-01722-4

Keywords:
Anticanonical,
rational,
surface,
base points,
fixed components,
linear systems

Received by editor(s):
September 29, 1995

Additional Notes:
This work was supported both by the National Science Foundation and by a Spring 1994 University of Nebraska Faculty Development Leave. I would also like to thank Tony Geramita for a helpful discussion, and the referee for a careful reading of the paper.

Article copyright:
© Copyright 1997
American Mathematical Society