Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Structure of Lorentzian tori with
a killing vector field

Author: Miguel Sánchez
Journal: Trans. Amer. Math. Soc. 349 (1997), 1063-1080
MSC (1991): Primary 53C50, 53C22
MathSciNet review: 1376554
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All Lorentzian tori with a non-discrete group of isometries are characterized and explicitly obtained. They can lie into three cases: (a) flat, (b) conformally flat but non-flat, and (c) geodesically incomplete. A detailed study of many of their properties (including results on the logical dependence of the three kinds of causal completeness, on geodesic connectedness and on prescribed curvature) is carried out. The incomplete case is specially analyzed, and several known examples and results in the literature are generalized from a unified point of view.

References [Enhancements On Off] (What's this?)

  • [B] J.K. Beem, Disprisoning and Pseudoconvex Manifolds, Proceedings Symp. Pure Math. 54 (1993), Part 2, 19-26. MR 94b:53101
  • [BE] J.K. Beem, P.E. Ehrlich, Global Lorentzian Geometry, Pure and Applied Mathematics, Marcel Dekker Inc., NY, 1981. MR 82i:53051
  • [BF] V. Benci, D. Fortunato, On the Existence of Infinitely Many Geodesics on Space-Time Manifolds, Adv. Math. 105 No. 1 (1994), 1-25. MR 95i:58043
  • [BN] G.S Birman, K. Nomizu, The Gauss-Bonnet theorem for two dimensional spacetimes, Michigan Math. J. 31 (1984), 77-81. MR 85g:53073
  • [BP] J.K. Beem, P.E. Parker, Klein-Gordon solvability and the geometry of geodesics, Pacific J. Math. 107 No.1 (1983), 1-14. MR 85f:53034
  • [Bu] J.T. Burns, Curvature functions on Lorentz 2-manifolds, Pacific J. Math. 70 (1977), 325-335. MR 58:24143
  • [CR] Y. Carrière, L. Rozoy, Complétude des Métriques Lorentziennes de $T^2$ et Difféomorphismes du cercle, Bol. Soc. Bras. Mat., 25, No.2 (1994), 223-235. MR 96a:53080
  • [D] G. D'Ambra, Isometry groups of Lorentz manifolds, Invent. Math. 92, (1988), 555-565. MR 89h:53124
  • [DG] G. D'Ambra, M. Gromov, Lectures on transformation groups: geometry and dynamics, Surveys in Differential Geometry, 1 (1991), 19-111. MR 93d:58117
  • [FK] H.M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, Springer-Verlag, N.Y., 1992. MR 93a:30047
  • [G] G.J. Galloway, Compact Lorentzian manifolds without closed non space-like geodesics, Proc. Amer. Math. Soc. 98 (1986), 119-123. MR 87i:53094
  • [GM] F. Giannoni, A. Masiello, On the existence of geodesics on stationary Lorentz manifolds with boundary, J. Func. Anal. 101 No. 2 (1991), 340-369. MR 95b:58029
  • [H] S. Harris, Conformally stationary spacetimes, Class. Quantum Grav. 9 (1992), 1823-1827. MR 93c:83020
  • [J] D.J. Jee, Gauss-Bonnet formula for general Lorentzian surfaces, Geometriae Dedicata 15 (1984) 215-231.
  • [K] Y. Kamishima, Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields, J. Diff. Geom. 37 (1993), 569-601. MR 94f:53116
  • [Ka] J.L. Kazdan, Some applications of partial differential equations to problems in geometry, Surveys in Geometry Series, Tokyo Univ. 1983.
  • [Ko] S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1972. MR 50:8360
  • [KR] R.S. Kulkarni, F. Raymond, 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Diff. Geom., 21 (1985), 231-268. MR 87h:53092
  • [Ku1] R.S. Kulkarni, Proper Actions and Pseudo-Riemannian manifolds, Adv. in Math. 40 (1981), 10-51. MR 84b:53047
  • [Ku2] R. S. Kulkarni, An analogue to the Riemann mapping theorem for Lorentz metrics, Proc. Royal Soc. London, 401 (1985), 117-130. MR 87e:53108
  • [KW] J. Kazdan, F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14-47. MR 49:7949
  • [La] J. Lafuente López, A geodesic completeness theorem for locally symmetric Lorentz manifolds, Rev. Mat. Univ. Complutense Madrid, 1 (1988), 101-110. MR 90b:53077
  • [M] A. Masiello, On the existence of a closed geodesic in stationary Lorentz manifolds, J. Diff. Equations 104 No.1, (1993), 48-59. MR 94h:58048
  • [O] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, N.Y., 1983. MR 85f:53002
  • [RS1] A. Romero, M. Sánchez, On the completeness of geodesics obtained as a limit, J. Math. Phys. 34, No.8 (1993), 3768-3774. MR 94h:53052
  • [RS2] A. Romero, M. Sánchez, New properties and examples of incomplete Lorentzian tori, J. Math. Phys. 35 No.4 (1994), 1992-1997. MR 95h:53093
  • [RS3] A. Romero, M. Sánchez, On the completeness of certain families of semi-Riemannian manifolds, Geometriae Dedicata 53 (1994), 103-117. MR 95g:53049
  • [RS4] A. Romero, M. Sánchez, Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field, Proc. Amer. Math. Soc. 123 (1995), 2831-2833. MR 96c:53106
  • [RS5] A. Romero, M.Sánchez, An integral inequality on compact Lorentz manifolds and its applications, to appear in Bull. London Math. Soc.
  • [Sm] J. W. Smith, Lorentz structures on the plane, Trans. Amer.Math. Soc. 95 (1960), 226-237. MR 22:8454
  • [Sp] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 3, Publish or Perish Inc., 1979. MR 82g:53003c
  • [SW] R.K. Sachs, H. Wu, General Relativity for Mathematicians, Graduate Texts in Mathematics, Springer-Verlag, N.Y. Inc., 1977. MR 58:20239a
  • [WW] N.R. Wallach, F.W. Warner, Curvature forms for 2-manifolds, Proc. Amer. Math. Soc. 25 (1970), 712-713. MR 41:7581
  • [Y] U. Yurtsever, Test fields on compact space-times, J. Math. Phys. 31 (1990), 3064-3078. MR 92a:53098

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C50, 53C22

Retrieve articles in all journals with MSC (1991): 53C50, 53C22

Additional Information

Miguel Sánchez
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

Keywords: Killing vector field, conformally flat torus, isometry group, incomplete geodesic, geodesic connectedness, prescribed curvature Lorentzian torus
Received by editor(s): July 6, 1995
Additional Notes: This research has been partially supported by a DGICYT Grant No. PB94-0796
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society