Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Estimation of spectral gap for elliptic operators

Authors: Mu-Fa Chen and Feng-Yu Wang
Journal: Trans. Amer. Math. Soc. 349 (1997), 1239-1267
MSC (1991): Primary 35P15, 60H30
MathSciNet review: 1401516
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A variational formula for the lower bound of the spectral gap of an elliptic operator is presented in the paper for the first time. The main known results are either recovered or improved. A large number of new examples with sharp estimate are illustrated. Moreover, as an application of the march coupling, the Poincaré inequality with respect to the absolute distribution of the process is also studied.

References [Enhancements On Off] (What's this?)

  • [1] Chavel, I., Eigenvalues in Riemannian Geometry, New York: Academic Press, 1984. MR 80g:58104
  • [2] Chen, M. F., From Markov Chains to Non-Equilibrium Particle Systems, Singapore: World Scientific, 1992. MR 94a:60135
  • [3] Chen, M. F., Optimal Markovian couplings and applications, Acta Math. Sin. New Ser. 10:3 (1994), 260-275.
  • [4] Chen, M. F. and Li, S. F., Coupling methods for multidimensional diffusion processes, Ann. Probab. 17:1(1989), 151-177. MR 90a:60134
  • [5] Chen, M. F. and Wang, F. Y., Application of coupling method to the first eigenvalue on manifold, Sci. Sin. (A), 37:1(1994), 1-14. MR 96d:58141
  • [6] Chen, M. F. and Wang, F. Y., Estimation of the first eigenvalue of the second order elliptic operators, J. Funct. Anal. 131:2 (1995), 345-363. MR 96g:35142
  • [7] Chen, M. F. and Wang, F. Y., Estimates of logarithmic Sobolev constant- An improvement of Bakry-Emery criterion, preprint (1994).
  • [8] Chen, M. F. and Wang, F. Y., On order-preservation and positive correlations for multidimensional diffusion processes, Probab. Theory Relat. Fields, 95 (1993), 421-428. MR 94g:60147
  • [9] Fukushima, M., Oshima, Y. and Takeda, M., Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter & Co., 1994. MR 96f:60126
  • [10] Hsu, E. P., Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris Sér I. Math. 320 (1995), 1009-1012. MR 96e:58167
  • [11] Kac, I. S. and Krein, M. G., Criteria for discreteness of the spectrum of a singular string, Izv. Vyss. U\v{c}ebn. Zaved. Mat 2 (1958), 136-153 (In Russian). MR 25:3232
  • [12] Kotani, S. and Watanabe, S., Krein's spectral theory of strings and generalized diffusion processes, Lecture Notes in Math., 923 (1982), 235-259. MR 83h:60081
  • [13] Liggett, T. M., Exponential $L_{2}$ convergence of attractive reversible nearest systems, Ann. Prob. 17(1989), 403-432. MR 90h:60099
  • [14] Lindvall, T. and Rogers, L. C. G., Coupling of multidimensional diffusions by reflection, Ann. Probab. 14 (1986), 860-872. MR 88b:60179
  • [15] Wang, F. Y., Application of coupling method to the Neumann eigenvalue problem, Prob. Theory Relat. Fields, 98 (1994), 299-306. MR 96d:58141
  • [16] Wang, F. Y., Spectral gap for diffusion processes on non-compact manifolds, Chinese Sci. Bull., 40:14 (1995), 1145-1149. CMP 96:06
  • [17] Wang, F. Y., Logarithmic Sobolev inequalities for diffusion processes with application to path space, preprint (1995).
  • [18] Wang, F. Y., Gradient estimates on $\mathbf R^d $, Canad. Math. Bull., 37:4(1994), 560-570. MR 95i:35042

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35P15, 60H30

Retrieve articles in all journals with MSC (1991): 35P15, 60H30

Additional Information

Mu-Fa Chen
Affiliation: Department of Mathematics, Beijing Normal University, Beijing 100875, P.R. China

Feng-Yu Wang
Affiliation: Department of Mathematics, Beijing Normal University, Beijing 100875, P.R. China

Keywords: Spectral gap, diffusion process, coupling
Received by editor(s): December 3, 1995
Additional Notes: Research supported in part by the National Natural Science Foundation of China and the Foundation of Institution of Higher Education for Doctoral Program
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society