Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The image of the $BP$ Thom map for Eilenberg-MacLane spaces

Author: Hirotaka Tamanoi
Journal: Trans. Amer. Math. Soc. 349 (1997), 1209-1237
MSC (1991): Primary 55N22, 55P20, 55S25
MathSciNet review: 1401530
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fundamental classes in $BP$ cohomology of Eilenberg-MacLane spaces are defined. The image of the Thom map from $BP$ cohomology to mod-$p$ cohomology is determined for arbitrary Eilenberg-MacLane spaces. This image is a polynomial subalgebra generated by infinitely many elements obtained by applying a maximum number of Milnor primitives to the fundamental class in mod-$p$ cohomology. This subalgebra in mod $p$ cohomology is invariant under the action of the Steenrod algebra, and it is annihilated by all Milnor primitives. We also show that $BP$ cohomology determines Morava $K$ cohomology for Eilenberg-MacLane spaces.

References [Enhancements On Off] (What's this?)

  • [A1] J. F. Adams, Lectures on Generalised Cohomology, Lecture Notes in Math., vol. 99, Springer-Verlag, New York, 1969. MR 40:4943
  • [A2] J. F. Adams, Stable Homotopy and Generalized Homology, University of Chicago Press, Chicago, Ill., 1974. MR 53:6534
  • [Ar] S. Araki, Typical Formal Groups in Complex Cobordism and K-Theory, Lecture Notes Math., Kyoto Univ., vol. 6, Kinokuniya Book Store, 1973. MR 51:11549
  • [Ba] N. A. Baas, On bordism theory of manifolds with singularity, Math. Scand. 33 (1973), 279-302. MR 49:11547b
  • [BM] N. A. Baas and Ib Madsen, On the realization of certain modules over the Steenrod algebra, Math. Scand. 31 (1971), 220-224. MR 51:14048
  • [BP] E. H. Brown and F. P. Peterson, A spectrum whose $\mathbb {Z}_{p}$ cohomology is the algebra of reduced $p$-th powers, Topology 5 (1966), 149-154. MR 33:719
  • [H] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York, 1978. MR 82a:14020
  • [JW1] D. C. Johnson and W. S. Wilson, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327-353. MR 48:12576
  • [JW2] D. C. Johnson and W. S. Wilson, BP-operations and Morava's extraordinary K-theories, Math. Z. 144 (1975), 55-75. MR 51:14025
  • [JW3] D. C. Johnson and W. S. Wilson, The projective dimension of the complex cobordism of Eilenberg-MacLane spaces, Osaka J. Math. 14 (1977), 533-536. MR 57:7584
  • [JW4] D. C. Johnson and W. S. Wilson, The Brown-Peterson homology of elementary $p$-groups, Amer. J. Math. 107 (1985), 427-453. MR 86j:55008
  • [JY] D. C. Johnson and Z. Yosimura, Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980), 117-136. MR 81b:55010
  • [K] D. Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363-365. MR 45:9317
  • [M1] J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171. MR 20:6092
  • [M2] J. W. Milnor, On the cobordism ring $\Omega ^{*}$ and a complex analogue, Amer. J. Math. 82 (1960), 505-521. MR 22:9975
  • [M3] J. W. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 28:2544
  • [Mo] J. Morava, A product for the odd-primary bordism of manifolds with singularities, Topology 18 (1979), 177-186. MR 80k:57063
  • [Q] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298. MR 40:6565
  • [R1] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, Orlando, FL, 1986. MR 87j:55003
  • [R2] D. C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Annals of Math. Studies 128, Princeton Univ. Press, Princeton, NJ, 1992. MR 94b:55015
  • [RW1] D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1977), 241-280. MR 56:6644
  • [RW2] D. C. Ravenel and W.S.Wilson, The Morava K theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), 691-748. MR 81i:55005
  • [SY] N. Shimada and N. Yagita, Multiplications in the complex bordism theory with singularities, Publ. R. I. M. S., Kyoto Univ. 12 (1976), 259-293. MR 54:3723
  • [T] H. Tamanoi, A decomposition formula for Milnor's Steenrod reduced powers, mod-$p$ cohomology of Eilenberg-MacLane spaces in terms of Milnor basis, and $Q$-subalgebras, IHES preprint, IHES/M/95/51.
  • [W] W. S. Wilson, The $\Omega $-spectrum for Brown-Peterson cohomology, Part I, Comment. Math. Helv. 48 (1973), 45-55; Part II, Amer. J. Math. 97 (1975), 101-123. MR 48:5505; MR 52:4271
  • [Wu] U. Würgler, On products in a family of cohomology theories associated to the invariant prime ideals of $\pi _{*}(BP)$, Comment. Math. Helvet. 52 (1977), 457-481. MR 57:17624
  • [Y] N. Yagita, On the image $\rho \bigl (BP^{*}(X) \rightarrow H^{*}(X; \mathbb {Z}_{p})\bigr )$, Homotopy Theory and Related Topics (Kyoto, 1984), Adv. Stud. Pure Math., vol. 9, North-Holland, Amsterdam, 1987, pp. 335-344. MR 88j:55005
  • [Z] R. Zahler, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. 96 (1972), 480-504. MR 47:7742

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55N22, 55P20, 55S25

Retrieve articles in all journals with MSC (1991): 55N22, 55P20, 55S25

Additional Information

Hirotaka Tamanoi
Affiliation: Institut des Hautes Études Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, France
Address at time of publication: Department of Mathematics, University of California at Santa Cruz, Santa Cruz, California 95064

Keywords: $BP$ cohomology theory, $BP$ fundamental class, Eilenberg--Mac Lane spaces, Milnor primitives, Morava $K$ theory, Steenrod algebra, Thom map
Received by editor(s): October 5, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society