IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Mean-boundedness and Littlewood-Paley for separation-preserving operators


Authors: Earl Berkson and T. A. Gillespie
Journal: Trans. Amer. Math. Soc. 349 (1997), 1169-1189
MSC (1991): Primary 42A45, 42B25, 46E30, 47B40
DOI: https://doi.org/10.1090/S0002-9947-97-01896-5
MathSciNet review: 1407694
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $(\Omega ,\mathcal {M},\mu )$ is a $\sigma $-finite measure space, $1<p<\infty $, and $T: L^{p}(\mu )\to L^{p}(\mu )$ is a bounded, invertible, separation-preserving linear operator such that the linear modulus of $T$ is mean-bounded. We show that $T$ has a spectral representation formally resembling that for a unitary operator, but involving a family of projections in $L^{p}(\mu )$ which has weaker properties than those associated with a countably additive Borel spectral measure. This spectral decomposition for $T$ is shown to produce a strongly countably spectral measure on the ``dyadic sigma-algebra'' of $\mathbb {T}$, and to furnish $L^{p}(\mu )$ with abstract analogues of the classical Littlewood-Paley and Vector-Valued M. Riesz Theorems for $\ell ^{p}(\mathbb {Z})$.


References [Enhancements On Off] (What's this?)

  • [1] P. Auscher and M.J. Carro, On relations between operators on ${\mathbb {R}}^{N}$, ${\mathbb {T}}^{N}$ and ${\mathbb {Z}}^{N}$, Studia Math. 101 (1992), 165-182. MR 94b:42007
  • [2] S. Banach, Théorie des Opérations Linéaires, Monografje Matematyczne, Tom I, Warsaw, 1932.
  • [3] E. Berkson, J. Bourgain, and T.A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on $L^{p}$-subspaces, Integral Equations and Operator Theory 14 (1991), 678-715. MR 92j:47024
  • [4] E. Berkson and T.A. Gillespie, $AC$ functions on the circle and spectral families, J. Operator Theory 13 (1985), 33-47. MR 86c:47045
  • [5] E. Berkson and T.A. Gillespie, Fourier series criteria for operator decomposability, Integral Equations and Operator Theory 9 (1986), 767-789. MR 87m:47082
  • [6] E. Berkson and T.A. Gillespie, Ste\v{c}kin's theorem, transference, and spectral decompositions, J. Functional Analysis 70 (1987), 140-170. MR 87m:47082
  • [7] E. Berkson and T.A. Gillespie, The spectral decomposition of weighted shifts and the $A_{p}$ condition, Colloquium Math. 60-61 (special issue dedicated to A. Zygmund) (1990), 507-518. MR 92e:47045
  • [8] E. Berkson and T.A. Gillespie, La $q$-variation des fonctions et l'intégration spectrale des multiplicateurs de Fourier, Comptes rendus de l'Académie des Sciences (Paris) t. 318, Série I (1994), 817-820. MR 95a:43005
  • [9] A.P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. MR 37:2939
  • [10] R.R. Coifman and G. Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers, Studia Math. 47 (1973), 285-303. MR 49:1009
  • [11] J.L. Doob, Stochastic Processes, Wiley & Sons, New York, 1953. MR 15:445b
  • [12] R.E. Edwards and G.I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergebnisse der Math. und ihrer Grenzgebiete 90, Springer-Verlag, Berlin, 1977. MR 58:29760
  • [13] J. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116 $=$ Notas de Matemática (104), Elsevier Science Publ., New York, 1985. MR 87d:42023
  • [14] T.A. Gillespie, A spectral theorem for $L^{p}$ translations, J. London Math. Soc. (2) 11 (1975), 499-508. MR 52:1398
  • [15] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. MR 47:701
  • [16] C.-H. Kan, Ergodic properties of Lamperti operators, Canadian J. Math. 30 (1978), 1206-1214. MR 80g:47037
  • [17] D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), 235-254. MR 80f:42013
  • [18] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. MR 21:3764
  • [19] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I (Sequence Spaces), Ergebnisse der Math. und ihrer Grenzgebiete 92, Springer-Verlag, Berlin, 1977. MR 58:17766
  • [20] M. Lorente Domínguez and F.J. Martín-Reyes, The ergodic Hilbert transform for Cesàro bounded flows, Tôhoku Math. J. 46 (1994), 541-556. MR 95k:28037
  • [21] F.J. Martín-Reyes and A. de la Torre, The dominated ergodic theorem for invertible, positive operators, Semesterbericht Funktionalanalysis Tübingen, Sommersemester 1985, pp. 143-150.
  • [22] F.J. Martín-Reyes and A. de la Torre, The dominated ergodic estimate for mean bounded, invertible, positive operators, Proc. Amer. Math. Soc. 104 (1988), 69-75. MR 89i:47015
  • [23] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 45:2461
  • [24] R. Sato, A remark on the ergodic Hilbert transform, Math. J. Okayama Univ. 28 (1986), 159-163. MR 88k:47043
  • [25] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61. MR 87k:42018

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42A45, 42B25, 46E30, 47B40

Retrieve articles in all journals with MSC (1991): 42A45, 42B25, 46E30, 47B40


Additional Information

Earl Berkson
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green St., Urbana, Illinois 61801
Email: berkson@symcom.math.uiuc.edu

T. A. Gillespie
Affiliation: Department of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, Scotland
Email: t.a.gillespie@edinburgh.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-97-01896-5
Received by editor(s): August 17, 1995
Additional Notes: The work of the first author was supported by a grant from the National Science Foundation (U.S.A.).
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society