Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Integer translation of meromorphic functions

Authors: Jeong H. Kim and Lee A. Rubel
Journal: Trans. Amer. Math. Soc. 349 (1997), 1447-1462
MSC (1991): Primary 30D45
MathSciNet review: 1325918
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a given open set in the complex plane. We prove that there is an entire function such that its integer translations forms a normal family in a neighborhood of $z$ exactly for $z$ in $G$ if and only if $G$ is periodic with period 1, i.e., $z\pm 1\in G$ for all $z\in G$.

References [Enhancements On Off] (What's this?)

  • 1. G. D. Birkhoff, Démostration d'un théoréme élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475.
  • 2. C. Blair and L. A. Rubel, A universal entire function, Amer. Math. Monthly 90 (1983), 331-332. MR 85a:30046
  • 3. J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117-148. MR 33:282
  • 4. W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. MR 29:1337
  • 5. D. H. Luecking and L. A. Rubel, Complex analysis, Springer-Verlag, New York, 1984. MR 86d:30002
  • 6. F. Marty, Recherches sur la répartition des valeurs d'une fonction méromorphe, Ann. Fac. Sci. Univ. Toulouse (3) 23 (1931), 183-261.
  • 7. Paul Montel, Leçons sur les familles normals de fonctions analytiques et leurs applications, Paris, 1927.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 30D45

Retrieve articles in all journals with MSC (1991): 30D45

Additional Information

Jeong H. Kim
Affiliation: Korea Military Academy, Seoul 139-799, Korea

Lee A. Rubel
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Received by editor(s): October 17, 1994
Received by editor(s) in revised form: March 31, 1995
Additional Notes: The research of the second author was partially supported by a grant from the National Science Foundation.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society