On The Homotopy Type of for

Certain Finite 2-Groups

Authors:
Carlos Broto and Ran Levi

Journal:
Trans. Amer. Math. Soc. **349** (1997), 1487-1502

MSC (1991):
Primary 55R35; Secondary 55R40, 55Q52

DOI:
https://doi.org/10.1090/S0002-9947-97-01692-9

MathSciNet review:
1370636

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the homotopy type of classifying spaces , where is a finite -group, and we study the question whether or not the mod cohomology of , as an algebra over the Steenrod algebra together with the associated Bockstein spectral sequence, determine the homotopy type of . This article is devoted to producing some families of finite 2-groups where cohomological information determines the homotopy type of .

**1.**J. Aguadé,*Cohomology algebras with two generators*, Math. Z.**177**(1981), 289-296. MR**82d:55003****2.**J. Aguadé, C. Broto and D. Notbohm,*Homotopy classification of spaces with interesting cohomology and a conjecture of Cooke, part I*, Topology**33**(1994), 455-492. MR**95i:55006****3.**J. Aguadé, C. Broto and M. Santos,*Fake three connected coverings of Lie groups*, Duke Math. J.**80**(1995), 91-103. MR**96j:57050****4.**D. Benson and J. Carlson,*Cohomology of extraspecial groups*, Bull. London Math. Soc.**24**(1992), 209-235. MR**93b:20087****5.**A.K. Bousfield,*Homological localization towers for groups and -modules*, Mem. Amer. Math. Soc.**186**(1977). MR**56:5688****6.**A.K. Bousfield and D. Kan,*Localizations, completions and homotopy limits*, Lecture Notes in Math.**304**, Springer Verlag (1972). MR**51:1825****7.**W. Browder,*Torsion in -spaces*Ann. Math.**74**(1961), 24-51. MR**23:A2201****8.**W. Dwyer,*Strong convergence of the Eilenberg-Moore spectral sequence*, Topology**13**(1973), 255-265. MR**52:15464****9.**L. Evens and S. B. Priddy,*The cohomology of the semidihedral groups*, Contemp. Math.**37**(1985), 61-72. MR**82h:20075****10.**Z. Fiedorowicz and S. B. Priddy,*Homology of classical groups over finite fields and their associated infinite loop spaces*, Lecture Notes in Math.**674**, Springer Verlag (1978). MR**80g:55018****11.**R. Kane,*The Homology of Hopf Spaces*, North-Holland, (1988). MR**90f:55018****12.**I. Leary;*3-groups are not determined by their integral cohomology rings*, Preprint.**13.**G. Mislin,*Cohomologically central elements and fusion in groups*, Algebraic Topology, Homotopy and Group Cohomology, Proceedings, Barcelona 1990, Lecture Notes in Math.**1509**, Springer Verlag (1992). MR**94d:55032****14.**D. Quillen,*The mod-2 cohomology rings of extra special 2-groups and the spinor groups*, Math. Ann.**194**(1971), 197-212. MR**44:7582****15.**D. J. Rusin,*The mod-2 cohomology of metacyclic 2-groups*, J. Pure Appl. Algebra**44**(1987), 315-327. MR**88k:20076****16.**D. J. Rusin,*The cohomology of groups of order 32*, Math. Comp.**53**(1989), 359-385. MR**89k:20078**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
55R35,
55R40,
55Q52

Retrieve articles in all journals with MSC (1991): 55R35, 55R40, 55Q52

Additional Information

**Carlos Broto**

Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

Email:
broto@mat.uab.es

**Ran Levi**

Affiliation:
Mathematisches Institut, Universität Heidelberg, INF 288, Heidelberg 69120, Germany

Address at time of publication:
Department of Mathematics, Northwestern University, 2033 Sheridan Rd., Evanston, Illinois 60201

Email:
ran@math.nwu.edu

DOI:
https://doi.org/10.1090/S0002-9947-97-01692-9

Keywords:
Classifying spaces,
finite 2-groups,
cohomology,
Steenrod squares,
Bockstein spectral sequence

Received by editor(s):
May 19, 1995

Additional Notes:
C. Broto is partially supported by DGICYT grant PB94-0725.

R. Levi is supported by a DFG grant.

Article copyright:
© Copyright 1997
American Mathematical Society