Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

There are no piecewise linear maps of type $2^{\infty }$


Authors: Víctor Jiménez López and L'ubomír Snoha
Journal: Trans. Amer. Math. Soc. 349 (1997), 1377-1387
MSC (1991): Primary 58F08; Secondary 26A18, 54H20
DOI: https://doi.org/10.1090/S0002-9947-97-01801-1
MathSciNet review: 1389785
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to show that there are no piecewise linear maps of type $2^{\infty }$. For this purpose we use the fact that any piecewise monotone map of type $2^{\infty }$ has an infinite $\omega $-limit set which is a subset of a doubling period solenoid. Then we prove that piecewise linear maps cannot have any doubling period solenoids.


References [Enhancements On Off] (What's this?)

  • [AJS] L. Alsedà, V. Jiménez López and L'. Snoha, On $1$-difactors of Markov graphs and the prevalence of doubling period solenoids, preprint (1995).
  • [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publ., Singapore, 1993. MR 95j:58042
  • [Ba] B. Barna, Über die Iteration reeller Functionen II, Publ. Math. Debrecen 13 (1966), 169-172. MR 34:4419
  • [BC] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992. MR 93g:58091
  • [BKNS] H. Bruin, G. Keller, T. Nowicki and S. van Strien, Wild Cantor attractors exist, Ann. of Math. 143 (1996), 97-130. CMP 96:07
  • [BL] A. M. Blokh and M. Yu. Lyubich, Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems 2. The smooth case, Ergod. Th. & Dynam. Sys. 9 (1989), 751-758. MR 91e:58101
  • [BP] G. J. Butler and G. Pianigiani, Periodic points and chaotic functions in the unit interval, Bull. Austral. Math. Soc. 18 (1978), 255-265. MR 58:13203
  • [Co] W. A. Coppel, The solutions of equations by iteration, Proc. Camb. Phil. Soc. 51 (1955), 41-43. MR 16:577a
  • [De] A. Denjoy, Sur les courbes dé finies par les é quations differentielles à la surface du tore, Jour. Math. Pures Appl. 11 (1932), 333-375.
  • [FSh] V. V. Fedorenko and A. N. Sharkovskii, Continuous mappings of an interval with closed sets of periodic point, An investigation of differential and differential-difference equations, Inst. Math. Ukrain. Acad. Sci., Kiev, 1980, pp. (137-145) (Russian). MR 83i:58083
  • [Gu1] J. Guckenheimer, On the bifurcations of maps of the interval, Invent. Math. 39 (1977), 165-178. MR 55:11312
  • [Gu2] J. Guckenheimer, Sensitive dependence on initial conditions for one dimensional maps, Comm. Math. Phys. 70 (1979), 133-160. MR 82c:58037
  • [JS] V. Jimé nez Ló pez and L39 . Snoha, All maps of type $2^{\infty }$ are boundary maps, Proc. Amer. Math. Soc. (to appear).
  • [Ko] S. F. Kolyada, Interval maps with zero Schwarzian; in Functional-differential Equations and Their Applications, Inst. Math. Ukrain. Acad. Sci., Kiev, 1985, pp. (47-57) (Russian). MR 88i:58080
  • [Le] Z. L. Leibenzon, Investigation of some properties of a continuous pointwise mapping of an interval onto itself, having an application in the theory of nonlinear oscillations, Prikl. Mat. i Mekh. 17 (1953), 351-360 (Russian). MR 14:1072e
  • [Ly1] M. Yu. Lyubich, Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems 1. The case of negative Schwarzian derivative, Ergod. Th. & Dynam. Sys. 9 (1989), 737-750. MR 91e:58100
  • [Ly2] M. Yu. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. 140 (1994), 347-404. MR 95j:58108
  • [LY] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. MR 52:5898
  • [MMS] M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 271-318. MR 93d:58137
  • [MS] M. Misiurewicz and J. Smítal, Smooth chaotic functions with zero topological entropy, Ergod. Th. & Dynam. Sys. 8 (1988), 421-424. MR 90a:58118
  • [MSt1] W. de Melo and S. van Strien, A structure theorem in one-dimensional dynamics, Ann. of Math. 129 (1989), 519-546. MR 90m:58106
  • [MSt2] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993. MR 95a:58035
  • [MT] M. Martens and C. Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), 2863-2870. MR 96k:58180
  • [Pr] C. Preston, Iterates of piecewise monotone mappings of an interval, Lecture Notes in Math. 1347, Springer, Berlin, 1988. MR 89m:58109
  • [Sh1] A. N. Sharkovskii, Coexistence of cycles of a continuous mapping of the line into itself, Ukrain. Math. Zh. 16 (1964), 61-71 (Russian). MR 96j:58058
  • [Sh2] A. N. Sharkovskii, On cycles and the structure of a continuous mapping, Ukrain. Math. Zh. 17 (1965), 104-111 (Russian).
  • [Sm] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. MR 87m:58107

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58F08, 26A18, 54H20

Retrieve articles in all journals with MSC (1991): 58F08, 26A18, 54H20


Additional Information

Víctor Jiménez López
Affiliation: Departamento de Matem\aaa ticas, Universidad de Murcia, Campus de Espinardo, Aptdo. de Correos 4021, 30100 Murcia, Spain
Email: vjimenez@fcu.um.es

L'ubomír Snoha
Affiliation: Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Bansk\aaa Bystrica, Slovakia
Email: snoha@bb.sanet.sk

DOI: https://doi.org/10.1090/S0002-9947-97-01801-1
Keywords: Asymptotically periodic point, piecewise linear map, piecewise monotone map, solenoid, wandering interval, $\omega $-limit set
Received by editor(s): October 10, 1994
Additional Notes: A part of the work on this paper was done during the stay of the second author at the University of Murcia. The invitation and the support of this institution is gratefully acknowledged.
This work has been partially supported by the DGICYT grant numbers PB91-0575 and PB94-1159 and by the Slovak grant agency, grant number 1/1470/1994.
The main result of this paper was announced at the “Thirty years after Sharkovskii’s Theorem. New perspectives" Conference, held in La Manga (Murcia), Spain, June 13-17th, 1994.
The authors are greatly indebted to the referee for many helpful suggestions which enabled them to shorten and simplify the paper.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society