Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Poincaré Type Inequalities


Authors: Roger Chen and Peter Li
Journal: Trans. Amer. Math. Soc. 349 (1997), 1561-1585
MSC (1991): Primary 35P15, 58G11, 58G25
DOI: https://doi.org/10.1090/S0002-9947-97-01813-8
MathSciNet review: 1401517
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using estimates of the heat kernel we prove a Poincaré inequality for star-shape domains on a complete manifold. The method also gives a lower bound for the gap of the first two Neumann eigenvalues of a Schrödinger operator.


References [Enhancements On Off] (What's this?)

  • [B] Buser, P., A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), 213-230. MR 84e:58076
  • [C] Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, 1984. MR 86g:58140
  • [Ch] Cheeger, J., A lower bound for the smallest eigenvalue of the Laplacian, In ``Problems in analysis, a symposium in honor of S. Bochner''. Princeton University Press, 1970. MR 53:6645
  • [CGT] Cheeger, J., Gromov, G. & Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53. MR 84b:58109
  • [CY] Cheeger, J. & Yau, S. T., A lower bound for the heat kernel, Comm. Pure Appl. Math., 34 (1981), 465-480. MR 82i:58065
  • [Cn1] Chen, R., Eigenvalue estimate on a compact Riemannian manifold, Amer. J. Math. 111 (1989), 769-781. MR 90k:58228
  • [Cn2] Chen, R., Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. Amer. Math. Soc. 108 (1990), 961-970. MR 90g:58135
  • [G] Grigor'yan, A. A., The heat equation on noncompact Riemannian manifolds, English Transl. in Math. USSR Sb. 72 (1) (1992), 47-77. MR 92h:58189
  • [J] Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. MR 87i:35027
  • [KS] Kusuoka, S. & Stroock, D. W., Applications of the Malliavin calculus, part 3, Fac. Sci. Univ. Tokyo Sect. 1A Math. 34 (1987), 391-442. MR 89c:60093
  • [L1] Li, P., Lecture Notes on geometric analysis, Lec. notes Ser. 6, Res. Inst. Math., Seoul Nat'l Univ. Press (1993). MR 95:09
  • [L2] P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. 13 (1980), 451-469. MR 82k:58054
  • [LT] Li, P. & Treibergs, A., Applications of eigenvalue techniques to geometry, Contemporary Geometry, J.-Q. Zhong Memorial Volume, H. H. Wu, ed. The Univ. Ser. in Math., Plenum Press, 1991. MR 93i:58159
  • [LY1] Li, P. & Yau, S. T., Estimates of eigenvalues of a compact Riemannian manifold, AMS Proc. Symp. Pure Math., vol. 36, 1980, pp. 205-239. MR 81i:58050
  • [LY2] Li, P. & Yau, S. T., On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. MR 87f:58156
  • [M] Meyer, D., Minoration de la première valeur propre non nulle de problème de Neumann sur les variétés Riemanniennes à bord, Ann. Inst. Fourier (Grenoble) 36 (1986), 113-125. MR 88d:58128
  • [S] Saloff-Coste, L., Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), 417-450. MR 93m:58122
  • [SWYY] Singer, I. M., Wong, B., Yau, S. S. T. & Yau, S. T., An estimate of the gap of the first two eigenvalues of the Schrödinger operator, Ann. Scuola Norm. Pisa, Cl. Sci. IV 12 (1985), 319-333. MR 87j:35280
  • [Y] Yau, S. T., Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. 8 (1975), 487-507. MR 53:1478
  • [ZY] Zhong, J. Q. & Yang, H. C., On the estimate of first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27 (1984), 1265-1273. MR 87a:58162

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35P15, 58G11, 58G25

Retrieve articles in all journals with MSC (1991): 35P15, 58G11, 58G25


Additional Information

Roger Chen
Affiliation: Department of Mathematics, National Cheng Kung University, Tainan, Taiwan
Email: rchen@mail.ncku.edu.tw

Peter Li
Affiliation: Department of Mathematics, University of California, Irvine, California 92717-3875
Email: pli@math.uci.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01813-8
Received by editor(s): October 12, 1995
Additional Notes: The second author’s research was partially supported by NSF grant DMS-9300422
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society