Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Topological conjugacy of linear endomorphisms
of the 2-torus


Authors: Roy Adler, Charles Tresser and Patrick A. Worfolk
Journal: Trans. Amer. Math. Soc. 349 (1997), 1633-1652
MSC (1991): Primary 58F35, 15A36, 11E16
DOI: https://doi.org/10.1090/S0002-9947-97-01895-3
MathSciNet review: 1407693
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe two complete sets of numerical invariants of topological conjugacy for linear endomorphisms of the two-dimensional torus, i.e., continuous maps from the torus to itself which are covered by linear maps of the plane. The trace and determinant are part of both complete sets, and two candidates are proposed for a third (and last) invariant which, in both cases, can be understood from the topological point of view. One of our invariants is in fact the ideal class of the Latimer-MacDuffee-Taussky theory, reformulated in more elementary terms and interpreted as describing some topology. Merely, one has to look at how closed curves on the torus intersect their image under the endomorphism. Part of the intersection information (the intersection number counted with multiplicity) can be captured by a binary quadratic form associated to the map, so that we can use the classical theories initiated by Lagrange and Gauss. To go beyond the intersection number, and shortcut the classification theory for quadratic forms, we use the rotation number of Poincaré.


References [Enhancements On Off] (What's this?)

  • 1. R. Adler and R. Palais, Homeomorphic conjugacy of automorphisms of the torus, Proc. Amer. Math. Soc. 16 (1965), no. 6, 1222-1225. MR 33:1402
  • 2. J. Bernoulli, Recueil pour les Astronomes (Berlin) 1 (1772), 255-284.
  • 3. M. Boyle and D. Handelman, Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), no. 1, 121-149. MR 93e:58050
  • 4. R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman, Glenview, IL, 1971. MR 44:1023
  • 5. D. A. Buell, Binary quadratic forms: classical theory and modern computations, Springer-Verlag, New York, 1989. MR 92b:11021
  • 6. H. Cohn, A classical invitation to algebraic numbers and class fields, Springer-Verlag, New York, 1978. MR 80c:12001
  • 7. J. Cuntz and W. Krieger, Topological Markov chains with dicyclic dimension groups, J. Reine Angew. Math. 320 (1980), 44-51. MR 81m:54074
  • 8. H. Davenport, The higher arithmetic: An introduction to the theory of numbers, 6th ed., Cambridge University Press, 1992. MR 93i:11001
  • 9. R. Dedekind, Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunktionen, Journ. f. reine u. angew. Mathem. 1877, Mathematische Werke I (New York), Chelsea, 1969, pp. 174-201.
  • 10. E. G. Effros and C.-L. Shen, Approximately finite C${}^*$-algebras and continued fractions, Indiana University Math. J. 29 (1980), 191-204. MR 81g:46076
  • 11. E. Galois, Démonstration d'un théorème sur les fractions continues périodiques, Annales de Math. 1829, {\OE}vres Mathématiques d'Évariste Galois, 2nd edition (Paris), Gauthiers-Villars, 1951, pp. 1-8.
  • 12. K. F. Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, 1966, Translated by A. A. Clarke. MR 33:5545
  • 13. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford, New York, 1979.MR 81i:10003
  • 14. G. Humbert, Sur les fractions continues ordinaires et les formes quadratiques binaires indéfinies, J. Math. Pure Appl. 2 (1916), 104-154.
  • 15. S. Katok, Coding of closed geodesics after Gauss and Morse, To appear in Geometriae Dedicata.
  • 16. Y. Katznelson and D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Erg. Th. & Dyn. Sys. 9 (1989), 643-680. MR 91i:58121
  • 17. F. Klein and R. Fricke, Vorlesungen uber die theorie der elliptischen modulfunctionen, vol. II, B. G. Teubner, Leipzig, 1966. MR 40:1254b
  • 18. J. L. Lagrange, Additions au mémoire sur la résolution des équations numériques, Nouveaux Memoires de l'Acad. Berlin, 1770, {\OE}vres, volume 2 (Paris), Gauthiers-Villars, 1868, pp. 603-615.
  • 19. -, Recherches d'arithmétique, Nouveaux Mémoires de l'Acad. Berlin, 1773, {\OE}vres, volume 3 (Paris), Gauthiers-Villars, 1869, pp. 695-758.
  • 20. -, Recherches d'arithmétique, Nouveaux Mémoires de l'Acad. Berlin, 1775, {\OE}vres, volume 3 (Paris), Gauthiers-Villars, 1869, pp. 759-795.
  • 21. -, Additions aux Elements d'Algèbre d'Euler: Analyse Indéterminée. St. Petersburg, 1798, {\OE}vres, volume 7 (Paris), Gauthiers-Villars, 1877, pp. 5-180.
  • 22. C. G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. Mathematics 34 (1933), 313-316.
  • 23. G. Lejeune-Dirichlet, Simplification de la théorie des formes binaires du second degré à déterminant positif, J. de Math. 1857, Mathematische Werke II (New York), Chelsea, 1969, pp. 159-181.
  • 24. W. J. LeVeque, Topics in number theory, vol. 2, Addison-Wesley, Reading, Mass., 1956. MR 18:283d
  • 25. G. B. Mathews, Theory of numbers, 2nd ed., Chelsea, New York, 1961. MR 23:A3698
  • 26. R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1995. CMP 96:11
  • 27. H. Poincaré, Sur les courbes définies pas des équations différentielles, J. Math Pures et Appl. $4^{\mbox {\`{e}me}}$ série 1 1885, {\OE}vres Complètes, t. 1 (Paris), Gauthier-Villars, Paris, 1951, pp. 90-158.
  • 28. J.-A. Serret, Développements sur une classe d'équations, J. de Math. 15 (1850), 152-168.
  • 29. H. J. S. Smith, Mémoire sur les équations modulaires, Atti ar Accad. Lincei 1877, Collected Papers, volume 2 (New York), Chelsea, 1965, pp. 224-241.
  • 30. -, Report on the theory of numbers, Part III, Report of the British Association 1861, Collected Papers, volume 1 (New York), Chelsea, 1965, pp. 163-228.
  • 31. O. Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300-302. MR 11:3k
  • 32. -, Connections between algebraic number theory and integral matrices, H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, Springer-Verlag, 1978. MR 80c:12001
  • 33. R. F. Williams, The ``DA'' maps of Smale and structural stability, Proc. Sympos. Pure Math. vol. 14, AMS (1970), 329-334. MR 41:9296

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58F35, 15A36, 11E16

Retrieve articles in all journals with MSC (1991): 58F35, 15A36, 11E16


Additional Information

Roy Adler
Affiliation: I.B.M., P.O. Box 218, Yorktown Heights, New York 10598
Email: adler@watson.ibm.com

Charles Tresser
Email: tresser@watson.ibm.com

Patrick A. Worfolk
Affiliation: The Geometry Center, 1300 S. Second St., Minneapolis, Minnesota 55454
Email: worfolk@geom.umn.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01895-3
Received by editor(s): November 13, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society