THE GROUP OF GALOIS EXTENSIONS
OVER ORDERS IN KC_{p^2}

ROBERT UNDERWOOD

ABSTRACT. In this paper we characterize all Galois extensions over H where H is an arbitrary R-Hopf order in KC_{p^2}. We conclude that the abelian group of H-Galois extensions is isomorphic to a certain quotient of units groups in $R \times R$. This result generalizes the classification of H-Galois extensions, where $H \subset KC_p$, due to Roberts, and also to Hurley and Greither.

INTRODUCTION

Let K be a finite extension of the p-adic rationals \mathbb{Q}_p endowed with the p-adic valuation ν with $\nu(p) = 1$. Let R be the integral closure of \mathbb{Z}_p in K and let H be an arbitrary R-Hopf algebra order in KC_{p^2}. We assume that R contains ζ, a primitive p^2nd root of unity; thus the linear dual $H^* = Hom_R(H, R)$ is an R-Hopf algebra order in KC_{p^2}. In this paper we characterize all Galois extensions over H, and hence, all Galois algebras over H^*. We conclude that the abelian group of H-Galois extensions is isomorphic to a certain quotient of units groups in $R \times R$. This result generalizes the classification of H-Galois extensions, where $H \subset KC_p$, due to Roberts [R, Thm. 1], and also found in [H, Thm 4.9] and [G, Prop. II.2.1].

1. Definitions and preliminaries

Let C_{p^2} denote the cyclic group of order p^2 with generator g. Then the group ring KC_{p^2} can be endowed with the structure of a K-Hopf algebra, with Δ, ϵ, and σ denoting the co-multiplication, co-unit, and antipode maps. An R-Hopf algebra order in KC_{p^2} is an R-Hopf algebra H which is a finitely generated projective R module satisfying

$$H \otimes_R K \cong KC_{p^2}$$

as K-Hopf algebras. Note that as a finitely generated module over a local ring R, a Hopf algebra order in KC_{p^2} is free over R of rank p^2.

The structure of R-Hopf algebra orders in KC_{p^2} has been determined by C. Greither in [G, Cor. 3.6], and this author in [U2, Main Theorem]. For an arbitrary R-Hopf algebra order H in KC_{p^2}, we have that

$$H = A_v(s, r) = R \left[\frac{g^p - 1}{x_s}, \frac{g - a_v}{x_r} \right], \quad \langle g \rangle = C_{p^2}.$$
Here x_s, x_r denote elements in R of value s, r respectively. The quantity a_v is an element in $R \left[\frac{g^p - 1}{x_s} \right]$ of the form $a_v = \sum_{i=0}^{p-1} v^i e_i$, where v is a certain unit in R and the e_i are the idempotents for the maximal integral order in KC_p (for details see [G, Cor. 3.6], [U2, §1.2], [U3, §3.1]). Moreover, it is not difficult to show that the algebra generator $\frac{g^p - 1}{x_s}$ is a root of the monic polynomial

$$p(X) = x_{-ps}((1 + x_s X)^p - 1)$$

of degree p with coefficients in R, and that the generator $\frac{g - a_v}{x_r}$ is a root of the monic polynomial

$$q(Y) = x_{-pr}((a_v + x_r Y)^p - g^p)$$

of degree p with coefficients in $R \left[\frac{g^p - 1}{x_s} \right]$. Hence an R basis for H consists of

$$\left\{ \left(\frac{g^p - 1}{x_s} \right)^i \left(\frac{g - a_v}{x_r} \right)^j \right\},$$

for $i, j = 0, \ldots, p - 1$.

For $\nu(1 - v)$ sufficiently large we can assume that $v = 1$; thus $a_v = 1$. In this case the R-Hopf order $A_1(s, r)$ can be written as the Larson order

$$H(s, r) = R \left[\frac{g^p - 1}{x_s}, \frac{g - 1}{x_r} \right].$$

Necessarily, we must have $pr \leq s$ (cf. [U2, §1.2]). As before, the algebra generator $\frac{g^p - 1}{x_s}$ is a root of the monic polynomial

$$p(X) = x_{-ps}((1 + x_s X)^p - 1)$$

of degree p with coefficients in R, and the generator $\frac{g - 1}{x_r}$ is a root of the monic polynomial

$$q(Y) = x_{-pr}((1 + x_r Y)^p - g^p)$$

of degree p with coefficients in $R \left[\frac{g^p - 1}{x_s} \right]$. It follows that an R basis for the Larson order $H(s, r)$ consists of

$$\left\{ \left(\frac{g^p - 1}{x_s} \right)^i \left(\frac{g - 1}{x_r} \right)^j \right\},$$

for $i, j = 0, \ldots, p - 1$.

Let $H = A_v(s, r)$ be an arbitrary order in KC_p^2. Since we supposed that $\zeta \in R$, the linear dual $H^* = Hom_R(H, R)$ inherits the structure of a Hopf algebra order in KC_p^2 of the form

$$H^* = A_v'(r', s') \cong R \left[\frac{g^p - 1}{x_{r'}}, \frac{g - a_v'}{x_{s'}} \right]$$

where $r' = \frac{1}{p^s} - r$, $s' = \frac{1}{p^s} - s$, and $v' = 1 + \zeta - v$ (cf. [G, Remark 3.12], [U3, Thm 3.1.0]). We note that for the dual pair $A_v(s, r)$ and $A_v'(r', s')$ we have either $pr \leq s$ or $ps' \leq r'$ (cf. [U2, Thms. 2.4, 2.5]).
In general, an arbitrary order in KC_{p^2} is either a Larson order $H(s, r)$, or a non-Larson order of the form $A_v(s, r)$.

Again, let H denote an arbitrary R-Hopf order in KC_{p^2}.

Definition 1.0. An H-Galois extension of R is a finitely generated projective R-algebra S together with an R-algebra map

$$\alpha : S \to S \otimes H$$

satisfying the conditions

$$(\alpha \otimes 1)\alpha = (1 \otimes \Delta)\alpha,$$

$$(1 \otimes \epsilon)\alpha = Id_S,$$

with the map

$$\gamma : S \otimes S \to S \otimes H,$$

given by

$$\gamma(s \otimes t) = \sum_{(t)} st(1) \otimes t(2)$$

an isomorphism. Here we employ the Sweedler-like notation $\alpha(t) = \sum_{(t)} t(1) \otimes t(2)$, where $t(1) \in S$, $t(2) \in H$.

Definition 1.1. A finitely generated projective R-algebra S is an H-Galois algebra if there exists an H-module map

$$\beta : H \otimes S \to S,$$

satisfying

$$\beta(h \otimes 1) = \epsilon(h),$$

$$\beta(h \otimes xy) = \sum_{(h)} \beta(h(1) \otimes x) \cdot \beta(h(2) \otimes y),$$

with the map

$$H \otimes S \to \text{End}_R(S), \ h \otimes x \mapsto (y \mapsto x \cdot \beta(h \otimes y)),$$

an isomorphism.

We note that S is an H-Galois extension if and only if S is an H^*-Galois algebra (cf. [C, §1]).

Our goal in this paper is to characterize all H-Galois extensions S, where H is an arbitrary R-Hopf algebra order in KC_{p^2}. Note that S. Hurley, [H], C. Greither, [G], and L. Roberts [R] all provide classifications of H-Galois extensions when H is an arbitrary “Tate-Oort” order in KC_p. Our methods here generalize those of [G] and [R]. We realize that every R-Hopf order H in KC_{p^2} will give rise to a finite group scheme $Sp_RH = \text{Hom}_{R-alg}(H, H)$ of order p^2. Moreover, the cohomology group $H^1(R, Sp_RH)$ can be identified with the collection of H-Galois extensions, up to H-comodule isomorphism. In other parlance, the group $H^1(R, Sp_RH)$ corresponds to isomorphism classes of principal homogeneous spaces for Sp_RH over the base scheme Sp_RR, and the affine algebras of these principal homogeneous spaces give rise to our H-Galois extensions. (Cf. [G, Intro.] and [M1, Ch.III, § 4].)
Our plan is to calculate $H^1(R, Sp_R H)$ and then give the algebraic structure of the corresponding H-Galois extensions. Our first step is to involve $Sp_R H$ in a short exact sequence of group schemes. Specializing to the case where H is a Larson order $H(s, r)$, we first resolve $Sp_H(s, r)$ and then compute $H^1(R, Sp_H(s, r))$. Next we consider the class of non-Larson orders in $K_{C_p^2}$, of the form $A_v(s, r)$. We then give a resolution of $SpA_v(s, r)$, and compute $H^1(R, SpA_v(s, r))$.

2. A resolution of $Sp_R(H(s, r))$

To resolve $Sp_R(H(s, r))$, we first need to define certain abelian group functors $E_{s, r}$ and $E_{ps, pr}$. We first define $E_{s, r}$. Let A be a commutative R-algebra, and let $G_{s, r}(A)$ be the subset of $U(A) \times U(A)$ defined

$$G_{s, r}(A) = \{(u_0, u_1) \in U(A) \times U(A) | u_0 \equiv 1 \text{(mod } x_s) \text{ and } u_1 \equiv 1 \text{(mod } x_r)\}.$$

Here $a \equiv b \text{(mod } x_s)$ if and only if $a - b \in x_s A$. One easily checks that $G_{s, r}(A)$ forms a subgroup of $U(A) \times U(A)$ under coordinatewise multiplication. Moreover, for each element $(u_0, u_1) \in G_{s, r}(A)$ there is a pair $(w_0, w_1) \in A \times A$ with

$$w_0 = 1 + x_s u_0 \quad \text{and} \quad w_1 = 1 + x_r u_1.$$

With this in mind, we define a subset $E_{s, r}(A)$ of $A \times A$ as follows:

$$E_{s, r}(A) = \{(w_0, w_1) \in A \times A | w_0 = \frac{u_0 - 1}{x_s} \text{ and } w_1 = \frac{u_1 - 1}{x_r} \},$$

for some $(u_0, u_1) \in G_{s, r}(A)$.

By construction, we have a bijection of sets

$$\rho : E_{s, r}(A) \rightarrow G_{s, r}(A), \quad \rho(w_0, w_1) = (u_0, u_1).$$

In fact, we can put a group structure on $E_{s, r}(A)$ so that ρ is an isomorphism of abelian groups. For two elements $(w_{00}, w_{10}), (w_{01}, w_{11}) \in A \times A$ we simply define an operation

$$(w_{00}, w_{10}) \ast (w_{01}, w_{11}) = (w_{00} w_{01}, w_{01} w_{11}),$$

induced from the group structure of $G_{s, r}(A)$. We realize that $E_{s, r}$ is a group functor from the category of commutative R-algebras to the category of abelian groups and is representable by the R-Hopf algebra

$$B = R \left[T_0, T_1, (1 + x_s T_0)^{-1}, (1 + x_r T_1)^{-1} \right],$$

where T_0, T_1 are indeterminates. Comultiplication in B is the unique R-algebra map $\Delta : B \rightarrow B \otimes B$ which makes the elements $1 + x_s T_0, 1 + x_r T_1$ grouplike.

In a similar manner we define the abelian group functor $E_{ps, pr}$. Let A be any commutative R-algebra, and let

$$E_{ps, pr}(A) = \{(w_0, w_1) \in A \times A | w_0 = \frac{u_0 - 1}{x_{ps}}, w_1 = \frac{u_1 - 1}{x_{pr}} \},$$

for some $(u_0, u_1) \in G_{ps, pr}(A)$ with

$$G_{ps, pr}(A) = \{(u_0, u_1) \in U(A) \times U(A) | u_0 \equiv 1 \text{(mod } x_{ps}), u_1 \equiv 1 \text{(mod } x_{pr})\}.$$

We see that $E_{ps, pr}$ is a group functor from the category of commutative R-algebras to the category of abelian groups, and is represented by the R-Hopf algebra

$$R \left[T_0, T_1, (1 + x_{ps} T_0)^{-1}, (1 + x_{pr} T_1)^{-1} \right],$$

with indeterminates T_0, T_1.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 2.0. There is an epimorphism of flat sheaves $\Theta : E_{s,r} \to E_{ps,pr}$ whose kernel is the group scheme represented by the R-Hopf algebra $H(s,r)$.

Proof. Let Θ be the morphism on $E_{s,r}$ defined

$$\Theta(A)((w_{u_0}, w_{u_1})) = (p(w_{u_0}), (1 + x_s w_{u_0})^{-1}q(w_{u_0}, w_{u_1})),$$

with

$$p(T_0) = x_{ps}((1 + x_s T_0)^p - 1),$$

$$q(T_0, T_1) = x_{pr}((1 + x_r T_1)^p - (1 + x_s T_0)).$$

Now since $s \leq \frac{1}{p-1}$ and $pr \leq s$,

$$\frac{u_0 - 1}{x_s} \in A \implies \frac{u_0^p - 1}{x_{ps}} \in A,$$

and

$$\frac{u_1 - 1}{x_r} \in A \implies \frac{u_1^p - 1}{x_{pr}} \in A \implies \frac{u_0^{-1} u_1^p - 1}{x_{pr}} \in A.$$

We next show that Θ is an epimorphism of R-group schemes in the flat topology. For an R-algebra A, let $(A \to A_i)$ be any flat covering of A. (We have identified affine open sets with their representing algebras, cf. [U1, Ch.2], [M1, pp. 46-66].) For $(a, b) \in E_{ps,pr}(A)$, let (a_i, b_i) be the image of (a, b) under the induced maps

$$E_{ps,pr}(A) \to E_{ps,pr}(A_i).$$

Now form the A_i-algebras

$$A_i' = A_i[T_0, T_1, (1 + x_s T_0)^{-1}, (1 + x_r T_1)^{-1}] / \langle p(T_0) - a_i, (1 + x_s T_0)^{-1}q(T_0, T_1) - b_i \rangle.$$

By §1, $p(T_0) - a_i$ is monic of degree p with coefficients in A_i and $q(T_0, T_1)$ is monic, degree p in T_1 with coefficients in $A_i[T_0, (1 + x_s T_0)^{-1}]$. It follows that the ideal generated by the coefficients of $(1 + x_s T_0)^{-1}q(T_0, T_1) - b_i \in A_i[T_0, (1 + x_s T_0)^{-1}]$ is all of $A_i[T_0, (1 + x_s T_0)^{-1}]$. Thus by [M1, p. 10, Remark 2.6], each map $A_i \to A_i'$ is flat, and hence faithfully flat by [M1, Prop. 2.7]. Thus $(A \to A_i')$, is a flat covering of A.

Now let x_i, y_i denote the images of T_0, T_1 respectively under the canonical map

$$A_i[T_0, T_1, (1 + x_s T_0)^{-1}, (1 + x_r T_1)^{-1}] \to A_i'.$$

Then $(x_i, y_i) \in E_{s,r}(A_i')$ with

$$\Theta(A_i')((x_i, y_i)) = (a_i, b_i) = res_{A_i, A_i'}((a, b))$$

for all i, where $res_{A_i, A_i'}((a, b))$ is the image of (a, b) under the induced maps

$$E_{ps,pr}(A) \to E_{ps,pr}(A_i').$$
hence Θ is an epimorphism of flat sheaves (group schemes) by [M1, p. 63, Thm. 2.15(c)].

We also have a canonical surjection of R-algebras:
\[
R[T_0, (1 + x_s T_0)^{-1}, T_1, (1 + x_r T_1)^{-1}] \twoheadrightarrow R[T_0, (1 + x_s T_0)^{-1}, T_1, (1 + x_r T_1)^{-1}] / p(T_0), (1 + x_s T_0)^{-1} q(T_0, T_1) \cong H(s, r),
\]
with \overline{T}_0, \overline{T}_1 identified with $\frac{g^p - 1}{x_s}$ and $\frac{g - 1}{x_r}$, respectively. Thus $\ker \Theta = Sp_R(H(s, r))$.

It follows that the resulting short exact sequence of R-group schemes
\[
Sp_R(H(s, r)) \to E_{s,r} \to E_{ps,pr}
\]
is a resolution of the group scheme SpH where H is an arbitrary Larson order in KC_{p^2}.

We are now in a position to prove our main theorem.

Theorem 2.1. Let $H = H(s, r)$ be an arbitrary Larson order in KC_{p^2}. Then the abelian group of H-Galois extensions is isomorphic to the quotient group
\[
E_{ps,pr}(R)/E_{s,r}^\Theta(R),
\]
where the class $[(w_{u_0}, w_{u_1})]$ corresponds to an H-Galois extension
\[
S = R \left[\frac{v_0 - 1}{x_s}, \frac{v_1 - 1}{x_r} \right],
\]
where $v_0^p = u_0$, $v_1^p = v_0 u_1$. The comodule map $\rho : S \to S \otimes H(s, r)$ is given by
\[
\rho : v_0 \mapsto v_0 \otimes g^p, \quad \rho : v_1 \mapsto v_1 \otimes g.
\]

Proof. Using the given resolution of $SpH(s, r)$, we employ the long exact sequence in cohomology yielding
\[
\begin{align*}
H^0(R, SpH(s, r)) &\to H^0(R, E_{s,r}) \to H^0(R, E_{ps,pr}) \\
&\twoheadrightarrow H^1(R, SpH(s, r)) \to H^1(R, E_{s,r}) \to H^1(R, E_{ps,pr}) \to \cdots.
\end{align*}
\]
Note that
\[
H^0(R, E_{s,r}) = E_{s,r}(R)
\]
and
\[
H^0(R, E_{ps,pr}) = E_{ps,pr}(R);
\]

hence we have an exact sequence
\[
E_{s,r}(R) \to E_{ps,pr}(R) \twoheadrightarrow H^1(R, SpH(s, r)) \to H^1(R, E_{s,r}).
\]

We claim that the last term $H^1(R, E_{s,r})$ is trivial. To this end suppose not, and let S be a nontrivial B-Galois extension with structure map ρ. (Recall that B is the representing algebra of $E_{s,r}$.) By [G, Lemma II.1.6],
\[
\{ x \in S \mid \rho(x) \in S \otimes_R R[T_0, (1 + x_s T_0)^{-1}] \}
\]
is a non-trivial $R[T_0, (1 + x_s T_0)^{-1}]$-Galois extension, contradicting [G, Proposition I.2.2], proving our claim.
Now with $H^1(R, E_{s,r}) = 0$ we write the exact sequence

$$E_{s,r}(R) \xrightarrow{\Theta} E_{ps,pr}(R) \to H^1(R, SpH(s,r)).$$

It follows that

$$E_{ps,pr}(R)/E_{s,r}^\Theta(R) \cong H^1(R, SpH(s,r)).$$

Given an element $(w_{u_0}, w_{u_1}) \in E_{ps,pr}(R)$ we construct the corresponding H-Galois extension S by constructing the image of (w_{u_0}, w_{u_1}) under the connecting homomorphism

$$\delta : E_{ps,pr}(R) \to H^1(R, SpH(s,r)).$$

Following the standard description of δ (cf. [CF, p.97], [Gi, Ch. III]), we recall our surjection in the flat topology

$$\Theta : E_{s,r} \twoheadrightarrow E_{ps,pr}.$$

There exists a finite extension L/K, with ring extension $A = O_L/R$ and an element $(w_{v_0}, w_{v_1}) \in E_{s,r}(A)$ so that

$$\Theta(A)(w_{v_0}, w_{v_1}) = (w_{u_0}, w_{u_1}).$$

In other words, the element (v_0, v_1) satisfies

$$v_0^p = u_0, \quad v_1^{-1}v_0^p = u_1.$$

We now let $\delta(w_{u_0}, w_{u_1})$ correspond to the pair (v_0, v_1), forming the R-algebra

$$S = R\left[\frac{v_0 - 1}{xs}, \frac{v_1 - 1}{xr}\right].$$

We claim that S is an H-Galois extension contained in $O_L \subset L$. It is immediate that S is finitely generated because by construction the generators $w_{v_0} = \frac{v_0 - 1}{xs}$ and $w_{v_1} = \frac{v_1 - 1}{xr}$ are in A. One can check by hand that ρ is a comodule map, so it remains to show that ρ induces a bijection

$$\gamma_\rho : S \otimes S \to S \otimes H.$$

Viewing the situation over K, we have that

$$S \otimes K = K(v_0, v_1) = K(\sqrt[p]{u_0}, \sqrt[p]{u_1}) = K(\sqrt[p]{u_0}u_1^{p^2}) = K(v_1).$$

It follows that $S \otimes K$ is a KC_{p^2}-Galois extension with comodule map $\rho \otimes K$, by L. Robert’s isomorphism

$$U(K)/U(K)p^2 \cong H^1(K, \mu_{p^2}, K)$$

which computes all KC_{p^2}-Galois extensions, cf. [R, p. 693]. Now since

$$\gamma_{\rho \otimes K} : (S \otimes K) \otimes (S \otimes K) \to (S \otimes K) \otimes KC_{p^2}$$

is an isomorphism, then

$$\gamma_\rho : S \otimes S \to S \otimes H$$

is an injection. Following [G, II.1.5], we can show that γ_ρ is an bijection by showing that $\text{disc}(S/R) = \text{disc}(H/R)$. To this end, by [G, Prop. II.2.1]
is an $H(s)$-Galois extension, where $H(s)$ is the Tate/Oort order $R\left[\frac{g^p - 1}{x_s}\right]$. Thus by [G, Lemma II.1.5]
\[\text{disc}\left(R\left[\frac{g^p - 1}{x_s}\right]\right) = \text{disc}\left(R\left[\frac{v_0 - 1}{x_s}\right]\right);\]

hence
\[\text{disc}\left(R\left[\frac{g^p - 1}{x_s}\right]\otimes R\left[\frac{h - 1}{x_r}\right]/R\right) = \text{disc}\left(R\left[\frac{v_0 - 1}{x_s}\right]\otimes R\left[\frac{h - 1}{x_r}\right]/R\right),\]

where h generates a cyclic group of order p. Additionally,
\[\text{disc}\left(R\left[\frac{v_1 - 1}{x_r}\right]/R\right) = \text{disc}\left(R\left[\frac{h - 1}{x_r}\right]/R\right);\]

hence
\[\text{disc}\left(R\left[\frac{v_0 - 1}{x_s}\right]\otimes R\left[\frac{h - 1}{x_r}\right]/R\right) = \text{disc}\left(R\left[\frac{v_0 - 1}{x_s}\right]\otimes R\left[\frac{v_1 - 1}{x_r}\right]/R\right).\]

It follows that $\text{disc}(S/R) = \text{disc}(H/R)$ and hence S is an H-Galois extension. Moreover, if (w_{u_0}, w_{u_1}) is so that $(w_{u_0}, w_{u_1}) \in E_{s,r}(R)$, then
\[u_0 = v_0^p, \quad u_1 = v_0^{-1}v_1^p\]

where $(v_0, v_1) \in G_{s,r}(R)$. Now since $v_1 \in K$, $S \otimes K$ will correspond to the trivial KC_{p^2}-Galois extension (again use L. Roberts classification). Since the canonical map $H^1(R, SpH(s,r)) \to H^1(K, \mu_{p^2}, K)$ is injective (cf. [M2], III.1.1), we conclude that (w_{u_0}, w_{u_1}) corresponds to the trivial H-Galois extension iff $(w_{u_0}, w_{u_1}) \in E_{s,r}^\Theta(R)$. This completes the proof of the theorem.

We now turn our attention to calculating $H^1(R, SpA_v(s,r))$.

3. A RESOLUTION OF $SPR(A_v(s,r))$ WHEN $A_v(s,r)$ IS NOT LARSON

To resolve $SPR(A_v(s,r))$, we first define the abelian group functor $W_{s,r}$. We construct this functor by generalizing the method used to construct functors presented in [SS1, Prop. 2.2, Remark 2.3] and [SS2, §3]. In these papers, the authors have resolved

\[SpA_v(1/(p-1), 1/(p-1)) = SpH(0,0)^* = SpRC^*_{p^2},\]

where $RC^*_{p^2}$ is identified with the maximal integral order in KC_{p^2}.

Let F_0 be the constant polynomial $F_0 = 1$, and let $F_1(T_0)$ be the polynomial in the indeterminate T_0 defined

\[F_1(T_0) = \frac{1 + (1 + x_s T_0) + \cdots + (1 + x_s T_0)^{p-1}}{p} \]
\[+ v \left(\frac{1 + \zeta^{-p}(1 + x_s T_0) + \cdots + \zeta^{-(p-1)p}(1 + x_s T_0)^{p-1}}{p} \right) + \cdots \]
\[+ v^{p-1} \left(\frac{1 + \zeta^{-(p-1)p}(1 + x_s T_0) + \cdots + \zeta^{-(p-1)^2p}(1 + x_s T_0)^{p-1}}{p} \right) \]
Moreover, let

\[\alpha_0^F(T_0) = x_sT_0 + F_0 = x_sT_0 + 1, \]

\[\alpha_1^F(T_0, T_1) = x_rT_1 + F_1(T_0), \]

for \(T_0, T_1 \) indeterminate. Additionally, let

\[\beta_0^F(U_0) = \frac{U_0 - 1}{x_s}, \]

\[\Lambda_0^F(X_0, Y_0) = x_sX_0Y_0 + X_0 + Y_0, \]

for indeterminates \(U_0, X_0, Y_0 \). Finally, put

\[\omega_0^F(i) = \beta_0^F(\zeta^{pi}), \]

for \(i \in \mathbb{Z}_p \). Here \(\zeta^{pi} \) is defined as

\[\zeta^{pi} = \zeta^{p^0 i} \]

where \(i = \sum_{k \geq 0} i_k p^k \).

Lemma 3.0. Let \(x_{s_0} = x_s \) and \(x_{s_1} = x_r \). The family \(\{F_r\}, r = 0, 1, \) defined above satisfies the following conditions for each \(r \):

(i) \(F_r(0) = 1 \),

(ii) \(F_r(X_0)F_r(Y_0) \equiv F_r(\Lambda_0^F(X_0, Y_0))(\bmod x_{s_r}) \),

(iii) \(F_r(\omega_0^F(1)) \equiv \zeta^{p^i-r}(\bmod x_{s_r}). \)

Proof. This can be verified directly. For example, if \(p = 2 \), (ii) follows by the calculation

\[
\begin{align*}
F_1(X_0)F_1(Y_0) - F_1(x_sX_0Y_0 + X_0 + Y_0) &= \\
&= \left(\frac{1 + (1 + x_sX_0)}{2} + v(1 - (1 + x_sX_0)) \right) \\
&\quad \times \left(\frac{1 + (1 + x_sY_0)}{2} + v(1 - (1 + x_sY_0)) \right) \\
&\quad - \left(\frac{1 + (1 + x_s(x_sX_0Y_0 + X_0 + Y_0))}{2} + v(1 - (1 + x_s(x_sX_0Y_0 + X_0 + Y_0))) \right) \\
&= \frac{x_s^2X_0Y_0}{4} + \frac{v^2x_s^2X_0Y_0}{4} - \frac{x_s^2X_0Y_0}{2} \\
&\equiv 0(\bmod x_r)
\end{align*}
\]

since \(v(1 - v^2) \geq 2s' + r \). \(\square \)

Thus by [SS1, Remark 2.3] we can construct an \(R \)-group scheme \(W_{s,r} \) with representing algebra

\[C = R[T_0, T_1, (\alpha_0^F(T_0))^{-1}, (\alpha_1^F(T_0, T_1))^{-1}]. \]

Observe that property (ii) above guarantees a well-defined group law on \(W_{s,r} \). Let \((m_0, m_1), (n_0, n_1) \in W_{s,r}(A) \) for an \(R \)-algebra \(A \). Then we define

\[
(m_0, m_1) \ast (n_0, n_1) = (m_0 + n_0 + x_s m_0 n_0, m_1 F_1(n_0) + n_1 F_1(m_0) + x_r m_1 n_1 + y)
\]
where y is some element of A determined by the congruence in (ii). Moreover condition (i) implies an identity for $W_{s,r}$.

We realize that there is an inclusion of group schemes

$$Sp(A_v(s,r)) \hookrightarrow W_{s,r}$$

induced by the surjection

$$C \rightarrow C/(x_{-ps}(1 - a_0^G(T_0)^p), x_{-pr}(a_0^G(T_0) - a_1^G(T_0, T_1)^p)) \cong A_v(s,r)$$

with T_0, T_1 identified with $g^{-1}x_s$ and $g^{-a_v}x_r$, respectively. Moreover, there exists a commutative diagram

$$\begin{array}{ccc}
SpH(r) & \rightarrow & SpA_v(s,r) & \rightarrow & SpH(s) \\
\downarrow & & \downarrow & & \downarrow \\
SpR[T_0,(1 + x_rT_0)^{-1}] & \rightarrow & W_{s,r} & \rightarrow & SpR[T_0,(1 + x_sT_0)^{-1}] \\
\downarrow & & \downarrow & & \downarrow \\
SpR[T_0,(1 + x_{pr}T_0)^{-1}] & \rightarrow & W_{s,r}/SpA_v(s,r) & \rightarrow & SpR[T_0,(1 + x_{ps}T_0)^{-1}]
\end{array}$$

with all rows and columns s.e.s.’s. Here $H(s), H(r)$ denote Larson orders in KC_p. Thus the quotient $W_{s,r}/SpA_v(s,r)$ is a filtered group scheme of type (ps, pr), with filtration given by

$$SpR[T_0, (1 + x_{ps}T_0)^{-1}], SpR[T_0, (1 + x_{pr}T_0)^{-1}]$$

(cf. [SS2, §3]).

Thus by [SS2, Thm. 3.3]

$$V_{ps,pr} := W_{s,r}/Sp(A_v(s,r)) = Sp(R[T_0,T_1,(a_0^G(T_0))^{-1}, (a_1^G(T_0, T_1))^{-1}]),$$

where

$$a_0^G(T_0) = 1 + x_{ps}T_0$$

and

$$a_1^G(T_0, T_1) = G_1(T_0) + x_{pr}T_1,$$

for some polynomial $G_1(T_0) \in R[T_0]$ satisfying the conditions

(i) \hspace{1cm} $G_1(0) = 1,$

(ii) \hspace{1cm} $G_1(X_0)G_1(Y_0) \equiv G_1(X_0 + Y_0 + x_{ps}X_0Y_0)(mod \ x_{pr}).$

It follows that the resulting short exact sequence of R-group schemes

$$SpR(A_v(s,r)) \rightarrow W_{s,r} \xrightarrow{\Psi} V_{ps,pr},$$

where Ψ is the canonical surjection, is a resolution of the group scheme SpH where H is an arbitrary non-Larson order in KC_{p^2}.

We are now in a position to prove our second main theorem.

Theorem 3.1. Let $H = A_v(s,r)$ be an arbitrary non-Larson order in KC_{p^2}. Then the abelian group of H-Galois extensions is isomorphic to the quotient group

$$V_{ps,pr}(R)/W_{s,r}^\Psi(R).$$
where the class $[(t_0, t_1)]$ corresponds to an H-Galois extension S of the form

$$S = R \left[\frac{v_0 - 1}{x_s}, \frac{v_1 - F_1(t_0)}{x_r} \right],$$

where $v_0^p = \alpha^G_0(t_0)$, $v_0^{-1}v_1^p = \alpha^G_1(t_0, t_1)$ and $v_0' = \frac{v_0 - 1}{x_s}$. The comodule map $\rho: S \to S \otimes A_v(s, r)$ is given by

$$\rho: v_0 \mapsto v_0 \otimes g^p,$$

$$\rho: v_1 \mapsto v_1 \otimes g.$$

Proof. Using the given resolution of $Sp(A_v(s, r))$, we employ the long exact sequence in cohomology yielding

$$H^0(R, SpA_v(s, r)) \to H^0(R, W_{s, r}) \to H^0(R, V_{ps, pr}) \to H^1(R, SpA_v(s, r)) \to H^1(R, W_{s, r}) \to H^1(R, V_{ps, pr}) \to \cdots.$$

Note that

$$H^0(R, W_{s, r}) = W_{s, r}(R)$$

and

$$H^0(R, V_{ps, pr}) = V_{ps, pr}(R);$$

hence we have an exact sequence

$$W_{s, r}(R) \to V_{ps, pr}(R) \to H^1(R, SpA_v(s, r)) \to H^1(R, W_{s, r}).$$

Now since $H^1(R, W_{s, r}) \cong 0$, we obtain the isomorphism

$$V_{ps, pr}(R)/W_{s, r}^\Psi(R) \cong H^1(R, SpA_v(s, r)).$$

Suppose $(t_0, t_1) \in V_{ps, pr}(R)$. We will construct the corresponding H-Galois extension by computing the image of (t_0, t_1) under the connecting homomorphism

$$\delta: V_{ps, pr}(R) \to H^1(R, SpA_v(s, r)).$$

By [SS1, §2.3, p. 109], the canonical flat surjection $\Psi: W_{s, r} \to V_{ps, pr}$ can be defined via polynomials:

$$(T_0, T_1) \mapsto (\Psi_0(T_0), \Psi_1(T_0, T_1))$$

where

$$\Psi_0(T_0) = \frac{(x_s T_0 + 1)^p - 1}{x_{ps}},$$

$$\Psi_1(T_0, T_1) = \frac{(x_s T_0 + 1)^{-1} (x_r T_1 + F_1(T_0))^p - G_1(\Psi_0(T_0))}{x_{pr}}.$$

Moreover, there exists a finite extension L/K with ring extension $A = O_L/R$ and an element $(p_0, p_1) \in W_{s, r}(A)$ so that

$$\Psi_0(p_0) = \frac{(x_s p_0 + 1)^p - 1}{x_{ps}} = t_0,$$

$$\Psi_1(p_0, p_1) = \frac{(x_s p_0 + 1)^{-1} (x_r p_1 + F_1(p_0))^p - G_1(\Psi_0(p_0))}{x_{pr}} = t_1.$$
If we write \(v_0 = 1 + x_s p_0, \) \(v_1 = F_1(p_0) + x_r p_1, \) we have that \(\delta((t_0, t_1)) \) corresponds to the \(H \)-Galois extension

\[
S = R \left[\frac{v_0 - 1}{x_s}, \frac{v_1 - F_1(v_0)}{x_r} \right],
\]

where \(v_0' = p_0. \) This follows exactly as in Theorem 2.1, and we outline the proof. We first see that \(S \) is finitely generated since \((p_0, p_1) \in W_{s,r}(A). \) We then check that \(S \otimes K \) is a \(KC_{p^2} \)-Galois extension, using L. Roberts isomorphism. Finally we conclude that \(S \) is an \(H \)-Galois extension by showing that \(\text{disc}(S/R) = \text{disc}(H/R). \)

Now suppose \((t_0, t_1) \in W_{s,r}^\Psi(R). \) Then there exists \((p_0, p_1) \in W_{s,r}(R) \) so that

\[
t_0 = \frac{\alpha_0^F(p_0)^p - 1}{x_p^{s}}, \quad t_1 = \frac{\alpha_0^F(p_0)^{-1}(\alpha_1^F(p_0, p_1))^p - G_1(t_0)}{x_p^{r}}.
\]

Over \(K, \)

\[
S \otimes K = K(\alpha_0^F(p_0), \alpha_1^F(p_0, p_1)) = K(\sqrt[p]{\alpha_1^G(t_0, t_1)^p \alpha_0^G(t_0)} = K(\alpha_1^F(p_0, p_1)),
\]

with \(\alpha_0^F(p_0, p_1) \in K. \) Hence \(S \otimes K \) is the trivial \(KC_{p^2} \)-Galois extension. It follows that \(S \) is the trivial \(A_{v}(s, r) \)-Galois extension iff the corresponding element \((t_0, t_1) \in W_{s,r}^\Psi(R). \) This completes the proof of the theorem.

References

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY AT MONTGOMERY, MONTGOMERY, ALABAMA 36117

E-mail address: underw@stango.aum.edu