Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Group of Galois Extensions
Over Orders in $KC_{p^{2}}$


Author: Robert Underwood
Journal: Trans. Amer. Math. Soc. 349 (1997), 1503-1514
MSC (1991): Primary 14L15, 16W30, 13B02; Secondary 13B25, 11Sxx
DOI: https://doi.org/10.1090/S0002-9947-97-01914-4
MathSciNet review: 1407713
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we characterize all Galois extensions over $H$ where $H$ is an arbitrary $R$-Hopf order in $KC_{p^{2}}$. We conclude that the abelian group of $H$-Galois extensions is isomorphic to a certain quotient of units groups in $R\times R$. This result generalizes the classification of $H$-Galois extensions, where $H\subset KC_{p}$, due to Roberts, and also to Hurley and Greither.


References [Enhancements On Off] (What's this?)

  • [CF] J.W.S. Cassels, A. Frohlich (eds.), Algebraic number theory, Academic Press, New York, (1967). MR 35:6500
  • [C] L.N. Childs, Taming wild extensions with Hopf algebras, Trans. Amer. Math. Soc. 304, No. 1(1987), 111-140. MR 89a:11119
  • [Gi] J. Giraud, Cohomologie non-abelienne, Columbia University, (1966).
  • [G] C. Greither, Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z. 210, (1992), 37-67. MR 93f:14024
  • [H] S. Hurley, Galois objects with normal bases for free Hopf algebras of prime degree, J. Algebra 109, (1987), 292-318. MR 88k:13003
  • [M1] J. S. Milne, Etale Cohomology, Princeton University Press, Princeton, NJ (1980). MR 81j:14002
  • [M2] -, Arithmetic duality theorems, Academic Press, Boston, (1986). MR 88e:14028
  • [R] L. Roberts, The flat cohomology of group schemes of order $p$, Amer. J. Math., 95, (1973), 688-702. MR 49:2741
  • [SS1] T. Sekiguchi, N. Suwa, Theories de Kummer-Artin-Schreier-Witt, Comptes Rendus de l'Acad. des Sci., 319, ser. I, 105-110, (1994). CMP 94:16
  • [SS2] -, On the unified Kummer-Artin-Schreier-Witt theory, Chuo University Preprint Series, no. 41, Chuo University, Bunkyoku, Tokyo, Japan (1994).
  • [U1] R.G.Underwood, Hopf algebra orders over a complete discrete valuation ring, their duals and extensions of $R$-groups, doctoral dissertation, State University of New York at Albany, (1992).
  • [U2] -, $R$-Hopf algebra orders in $KC_{p^{2}}$, J. Algebra, 169, (1994) 418-440. MR 95k:16055
  • [U3] -, The valuative condition and $R$-Hopf algebra orders in $KC_{p^{3}}$, Amer. J. Math., 118, no. 4, (1996) 701-743. CMP 96:15

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14L15, 16W30, 13B02, 13B25, 11Sxx

Retrieve articles in all journals with MSC (1991): 14L15, 16W30, 13B02, 13B25, 11Sxx


Additional Information

Robert Underwood
Affiliation: Department of Mathematics, Auburn University at Montgomery, Montgomery, Alabama 36117
Email: underw@tango.aum.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01914-4
Received by editor(s): June 9, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society