Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Wavelet transform
and orthogonal decomposition of $L^{2}$ space
on the Cartan domain $BDI(q=2)$

Author: Qingtang Jiang
Journal: Trans. Amer. Math. Soc. 349 (1997), 2049-2068
MSC (1991): Primary 22D10, 81R30; Secondary 42C99
MathSciNet review: 1373641
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G=\left ({\mathbb {R}}^{*}_{+}\times SO_{0}(1, n)\right ) \ltimes {\mathbb {R}}^{n+1}$ be the Weyl-Poincaré group and $KAN$ be the Iwasawa decomposition of $SO_{0}(1, n)$ with $K=SO(n)$. Then the ``affine Weyl-Poincaré group'' $G_{a}=\left ({\mathbb {R}}^{*}_{+}\times AN\right ) \ltimes {\mathbb {R}}^{n+1}$ can be realized as the complex tube domain $\Pi ={\mathbb {R}}^{n+1}+iC$ or the classical Cartan domain $BDI(q=2)$. The square-integrable representations of $G$ and $G_{a}$ give the admissible wavelets and wavelet transforms. An orthogonal basis $\{ \psi _{k}\}$ of the set of admissible wavelets associated to $G_{a}$ is constructed, and it gives an orthogonal decomposition of $L^{2}$ space on $\Pi $ (or the Cartan domain
$BDI(q=2)$) with every component $A_{k}$ being the range of wavelet transforms of functions in $H^{2}$ with $\psi _{k}$.

References [Enhancements On Off] (What's this?)

  • 1. G. Bohnké, Treillis d'ondelettes associés aux groupes de Lorentz, Ann. Inst. Henri Poincar$\acute e$, Phys. Théor. 54 (1991), 245-259. MR 93c:22020
  • 2. M. Duflo and C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal. 21 (1976), 209-243. MR 52:14145
  • 3. J. Faraut and A. Korányi, Analysis on symmetric cones, Clarendon Press, Oxford, 1994.
  • 4. H. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition. I, J. Funct. Anal. 86 (1989), 307-340. MR 91g:43011
  • 5. A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723-736. MR 85i:81146
  • 6. L. Hua, Harmonic analysis of several complex variables in classical domains, Amer. Math. Soc., Providence, RI, 1963. MR 30:2162
  • 7. Q. Jiang, Wavelet transform associated to the Weyl-Poincar$\acute e$ group, preprint.
  • 8. Q. Jiang and L. Peng, Phase space, wavelet transform and Toeplitz-Hankel type operators, Israel J. Math. 89 (1995), 157-171. MR 96a:47047
  • 9. A. Perelomov, Generalized coherent states and their applications, Springer-Verlag, Berlin, 1986. MR 87m:22035
  • 10. E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971. MR 46:4102
  • 11. G. Szegö, Orthogonal polynomials, 3rd ed., Amer. Math. Soc. Colloq. Pub., Vol. 23, 1967. MR 46:8631
  • 12. M. Taylor, Noncommutative harmonic analysis, Amer. Math. Soc., Providence, RI, 1986. MR 88a:22021
  • 13. A. Unterberger and J. Unterberger, A quantization of the Cartan domain BDI (q=2) and operators on the light cone, J. Funct. Anal. 72 (1987), 279-319. MR 88k:58152
  • 14. A. Unterberger, Analyse harmonique et analyse pseudo-diff$\acute e$rentielle du cône de lumière, Astérisque, no. 156, Soc. Math. France, 1987. MR 90d:58152
  • 15. S. Vagi, Harmonic analysis on Cartan and Siegel domains, Studies in Harmonic Analysis, J. A. Ash, eds., MAA, 1976, pp. 257-309. MR 57:16719
  • 16. N. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc., Providence, RI, 1968. MR 37:5429

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22D10, 81R30, 42C99

Retrieve articles in all journals with MSC (1991): 22D10, 81R30, 42C99

Additional Information

Qingtang Jiang
Affiliation: Department of Mathematics, Peking University, Beijing 100871, P. R. China
Address at time of publication: Department of Mathematics, The National University of Singapore, Lower Kent Ridge Road, Singapore 119260

Keywords: Weyl-Poincaré group, square-integrable representation, wavelet transform, orthogonal decomposition
Received by editor(s): November 20, 1994
Received by editor(s) in revised form: December 2, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society