Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundary value maps, Szegö maps and intertwining operators


Author: L. Barchini
Journal: Trans. Amer. Math. Soc. 349 (1997), 1877-1900
MSC (1991): Primary 22C05, 22E45, 22E46
DOI: https://doi.org/10.1090/S0002-9947-97-01834-5
MathSciNet review: 1401761
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider one series of unitarizable representations, the cohomological induced modules $A_{\mathfrak {q}}(\lambda )$ with dominant regular infinitesimal character. The minimal $K$-type $(\tau , V)$ of $A_{\mathfrak {q}}(\lambda )$ determines a homogeneous vector bundle $V_{\tau } \longrightarrow G/K $. The derived functor modules can be realized on the solution space of a first order differential operator $\mathcal {D}_{\mathfrak {l}}^{\lambda } $ on $V_{\tau }$. Barchini, Knapp and Zierau gave an explicit integral map $\mathcal {S}$ from the derived functor module, realized in the Langlands classification, into the space of smooth sections of the vector bundle $V_{\tau } \longrightarrow G/K $. In this paper we study the asymptotic behavior of elements in the image of $\mathcal {S}$. We obtain a factorization of the standard intertwining opeartors into the composition of the Szegö map $\mathcal {S}$ and a passage to boundary values.


References [Enhancements On Off] (What's this?)

  • [Bar] V. Bargman, Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947), 586-640. MR 9:133a
  • [Bl-1] B. Blank, Embedding limits of discrete series of semisimple Lie groups, Canadian Math. Conf. Proc. 1 (1981), 55-64. MR 83h:22001
  • [Bl-2] B. Blank, Knapp-Wallach Szegö integrals and the P-induced continuous representation: The parabolic rank one case, J.Func.Anal. 60 (1985), 127-145. MR 86i:22032
  • [Bl-3] B. Blank, Boundary behavior of limits of discrete series representations of real rank one groups, Pacific Jour. of Math. 122 (1986), 299-318. MR 87e:22027
  • [Bl-4] B. Blank, Knapp-Wallach Szegö integrals II, The higher parabolic rank case, Trans. A.M.S 300 (1987), 49-59. MR 88f:22041
  • [BKZ] L. Barchini, A.W. Knapp and R. Zierau, InterTwining operators into Dolbeault cohomology, Jour. Func. Anal. 107 (1992), 302- 341. MR 93e:22026
  • [B-1] L. Barchini, Szegö mappings, harmonic forms and Dolbeault cohomology, Jour. Func. Anal. 118 (1993), 351-406. MR 94k:22033
  • [B-2] L. Barchini, Szegö kernels associated with Zuckerman modules, J. Func. Anal. 131 (1995), 145-181. MR 96i:22033
  • [BW] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies, no. 94, Princeton Univ. Press, Princeton, NJ, 1980. MR 83c:22018
  • [C] W. Casselman, The differential equations satisfied by matrix coefficients, manuscript (1975).
  • [GKST] J.E. Gilbert, A. Kunze, R.J. Stanton, and P. Thomas, Higher gradients and representations of Lie groups, Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. II, Wadsworth, Belmont, CA, 1983, pp. 416-436. MR 85k:22032
  • [HC-1] Harish-Chandra, Harmonic Analysis on Real Reductive Groups I, the theory of the constant term, J.Func.Anal. 19 (1975), 104-204. MR 53:3201
  • [HC-2] Harish-Chandra, Harmonic Analysis on Real Reductive Groups II, Invent. Math. 36 (1976), 1-55. MR 55:12874
  • [HP] R. Hotta and R. Parthasarathy, Multiplicity formulae for discrete series, Invent. Math. 26 (1974), 133-178. MR 50:539
  • [KKMOOT] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. 107 (1978), 1-39. MR 81f:43013
  • [Ka] T. Kawazoe, On a global realization of a discrete series for $ SU (n, 1) $ as applications of Szegö operators and limits of discrete series, Tokyo J.Math. 12 (1989). MR 91b:22020
  • [K-O] A.W. Knapp and K. Okamoto, Limits of holomorphic discrete series, J. Func.Anal. 9 (1972), 375-409. MR 45:8774
  • [K-1] A.W. Knapp, A Szegö kernel for discrete series, Proceedings International Congress of Mathematicians. Canadian Mathematical Congress. 2 (1975), 99-104. MR 55:10606
  • [KW] A.W. Knapp and N. Wallach, Szegö kernels associated to discrete series, Invent. Math. 34, 62 (1976, 1980), 163-200, 341-346. MR 54:7704; MR 82i:22016
  • [K-2] A.W. Knapp, Commutativity of Intertwining Operators for Semisimple Lie Groups, Compositio Math. 46 (1982), 33-84. MR 83i:22022
  • [KS] A.W. Knapp and E. Stein, Intertwining operators for semisimple groups II, Invent. Math. 60 (1980), 9-84. MR 82a:22018
  • [KZ] A.W. Knapp and G. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982), 389-455. MR 84h:22034a
  • [K-3] A.W. Knapp, Representation Theory of Semisimple Groups : An overview based on examples, Princeton Univ. Press, Princeton, NJ, 1986. MR 87j:22022
  • [L] R. Langlands, On the classification of irreducible representations of real algebraic groups, Mimeographed notes, Inst. Adv. Stud., Princeton, NJ, 1973; reprinted in Representation theory and harmonic analysis on semisimple Lie groups (P.J. Sally, Jr., and D. A. Vogan, eds.), Math. Surveys and Monographs, vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170. MR 91e:22017
  • [Ma] H. Matumoto, Cohomological Hardy spaces for $ SU(2,2)$, Adv. Studies in Pure Math. 14 (1988), 469-497. MR 91c:22032
  • [Mi] H. Midorikawa, On certain irreducible representations of real rank one classical groups, J.Fac.of Science, The Univ. Tokyo, Sec IA. 27, no. 3 (1974), 435-459. MR 51:809
  • [M] D. Milicic, Asymptotic behavior of matrix coefficients of discrete series, Duke Math.J. 44 (1977), 59-88. MR 55:3171
  • [S] W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Ph.D. thesis, Univ. of California, Berkeley, CA, 1967; reprinted in Representation theory and harmonic analysis on semisimple Lie groups (P. J. Sally, Jr., and D. A. Vogan, Jr., eds.), Math. Surveys and Monographs, vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 223-286. MR 90i:22025
  • [Ta] R.Takashashi, Sur les fonctions spheriques et la formulae de Plancherel dans le groupe hyperbolique, Jap. J.Math. 31 (1961), 55-90. MR 27:2809
  • [VZ] D. Vogan and G.J. Zuckerman, Unitary representations with continuous cohomology, Compositio Math. 53 (1984), 51-90. MR 86k:22040
  • [W-1] N. Wallach, Asymptotic expansion of generalized matrix entries of representations of real reductive groups, Lie Group Representations, I (College Park, MD, 1982/83), Lecture Notes in Math., vol. 1024, Springer-Verlag, Berlin, 1983, pp. 287-369. MR 85g:22029
  • [W-2] N. Wallach, Real Reductive Groups I, Academic Press, 1988. MR 89i:22029
  • [W-3] N. Wallach, Real Reductive Groups II, Academic Press, 1992. MR 93m:22018
  • [Wo] H-W. Wong, Dolbeault cohomologies and Zuckerman modules associated with finite rank representations, Ph.D. thesis, Harvard Univ., Cambridge, MA, 1991. See also J. Funct. Anal. 129 (1995), 428-454. MR 96c:22024

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22C05, 22E45, 22E46

Retrieve articles in all journals with MSC (1991): 22C05, 22E45, 22E46


Additional Information

L. Barchini
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Address at time of publication: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Email: leticiz@math.okstate.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01834-5
Received by editor(s): February 17, 1995
Received by editor(s) in revised form: October 9, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society