Another note on Weyl's theorem
Authors:
Robin Harte and Woo Young Lee
Journal:
Trans. Amer. Math. Soc. 349 (1997), 21152124
MSC (1991):
Primary 47A10
MathSciNet review:
1407492
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: ``Weyl's theorem holds" for an operator on a Banach space when the complement in the spectrum of the ``Weyl spectrum" coincides with the isolated points of spectrum which are eigenvalues of finite multiplicity. This is close to, but not quite the same as, equality between the Weyl spectrum and the ``Browder spectrum", which in turn ought to, but does not, guarantee the spectral mapping theorem for the Weyl spectrum of polynomials in . In this note we try to explore these distinctions.
 1.
S.
K. Berberian, An extension of Weyl’s theorem to a class of
not necessarily normal operators, Michigan Math. J.
16 (1969), 273–279. MR 0250094
(40 #3335)
 2.
S.
K. Berberian, The Weyl spectrum of an operator, Indiana Univ.
Math. J. 20 (1970/1971), 529–544. MR 0279623
(43 #5344)
 3.
Pet′r
Bŭrnev, On the gravitational potential of homogeneous
polygons, Bŭlgar. Akad. Nauk. Otd. Mat. Fiz. Nauk. Izv. Mat.
Inst. 8 (1964), 13–22 (Bulgarian, with Russian and
French summaries). MR 0171616
(30 #1846)
 4.
Robin
Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish
Acad. Sect. A 85 (1985), no. 2, 151–176. MR 845539
(87h:47029)
 5.
Robin
Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), no. 2, 328–330. MR 870795
(88d:46088), http://dx.doi.org/10.1090/S00029939198708707955
 6.
Robin
Harte, Invertibility and singularity for bounded linear
operators, Monographs and Textbooks in Pure and Applied Mathematics,
vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
(89d:47001)
 7.
Woo
Young Lee and Hong
Youl Lee, On Weyl’s theorem, Math. Japon.
39 (1994), no. 3, 545–548. MR 1278871
(95a:47008)
 8.
W.Y. Lee and S.H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. Jour. 38 (1996), 6164. CMP 1996:8
 9.
Kirti
K. Oberai, On the Weyl spectrum, Illinois J. Math.
18 (1974), 208–212. MR 0333762
(48 #12086)
 10.
Kirti
K. Oberai, On the Weyl spectrum. II, Illinois J. Math.
21 (1977), no. 1, 84–90. MR 0428073
(55 #1102)
 11.
Carl
M. Pearcy, Some recent developments in operator theory,
American Mathematical Society, Providence, R.I., 1978. Regional Conference
Series in Mathematics, No. 36. MR 0487495
(58 #7120)
 12.
J.
G. Stampfli, Errata: Hyponormal operators and
spectral density, Trans. Amer. Math. Soc.
115 (1965), 550. MR 0196499
(33 #4686), http://dx.doi.org/10.1090/S00029947196501964992
 1.
 S.K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. Jour. 16 (1969), 273279. MR 40:3335
 2.
 S.K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. Jour. 20 (1970), 529544. MR 43:5344
 3.
 L.A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. Jour. 13 (1966), 285288. MR 30:1846
 4.
 R.E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85A (1985), 151176. MR 87h:47029
 5.
 R.E. Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), 328330. MR 88d:46088
 6.
 R.E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988. MR 89d:47001
 7.
 W.Y. Lee and H.Y. Lee, On Weyl's theorem, Math. Japon. 39 (1994), 545548. MR 95a:47008
 8.
 W.Y. Lee and S.H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. Jour. 38 (1996), 6164. CMP 1996:8
 9.
 K.K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208212. MR 48:12086
 10.
 K.K. Oberai, On the Weyl spectrum II, Illinois J. Math. 21 (1977), 8490. MR 55:1102
 11.
 C.M. Pearcy, Some recent developements in operator theory, CBMS Regional Conf. Ser. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1978. MR 58:7120
 12.
 J.G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469476. MR 33:4686
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
47A10
Retrieve articles in all journals
with MSC (1991):
47A10
Additional Information
Robin Harte
Affiliation:
School of Mathematics, Trinity College, Dublin 2, Ireland
Address at time of publication:
Instituto de Mathematicas, Area de Investigacion Cientifica, Circuito Exterior, Ciudad Universitaria, Mexico DF, CP 04510
Email:
rharte@gauss.matem.unam.mx
Woo Young Lee
Affiliation:
Department of Mathematics, Sung Kyun Kwan University, Suwon 440746, Korea
Email:
wylee@yurim.skku.ac.kr
DOI:
http://dx.doi.org/10.1090/S0002994797018813
PII:
S 00029947(97)018813
Keywords:
Weyl's theorem,
Browder's theorem,
Riesz points
Received by editor(s):
December 18, 1995
Additional Notes:
The second author was supported in part by BSRI951420 and KOSEF (94070102013, GARC)
Article copyright:
© Copyright 1997
American Mathematical Society
