Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the Faber coefficients
of functions univalent in an ellipse


Author: E. Haliloglu
Journal: Trans. Amer. Math. Soc. 349 (1997), 2901-2916
MSC (1991): Primary 30C45; Secondary 33C45
MathSciNet review: 1373635
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be the elliptical domain

\begin{displaymath}E=\{x+iy: \frac {x^{2}}{(5/4)^{2}}+ \frac {y^{2}}{(3/4)^{2}}<1 \}.\end{displaymath}

Let $S(E)$ denote the class of functions $F(z)$ analytic and univalent in $E$ and satisfying the conditions $F(0)=0$ and $F'(0)=1$. In this paper, we obtain global sharp bounds for the Faber coefficients of the functions $F(z)$ in certain related classes and subclasses of $S(E).$


References [Enhancements On Off] (What's this?)

  • 1. L. Bieberbach. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S.-B. Preuss. Akad. Wiss. 1916, 940-955.
  • 2. Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152. MR 772434, 10.1007/BF02392821
  • 3. D. A. Brannan, J. G. Clunie, and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A I 523 (1973), 18. MR 0338343
  • 4. L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 0274734, 10.1090/S0002-9947-1971-0274734-2
  • 5. C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Pontenzreihen, die gegegbene Werte nicht annehmen. Math. Ann. 64 (1907), 95-115.
  • 6. Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
  • 7. E. Haliloglu. Bounds for Faber coefficients of functions univalent in an ellipse, Ph.D. Thesis, Iowa State University, Ames, IA, 1993.
  • 8. Derek F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, vol. 80, Springer-Verlag, New York, 1989. MR 1007595
  • 9. K. Loewner. Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheit skreises $|z|<1$, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden. S.-B. Sächs. Akad. Wiss. 69 (1917), 89-106.
  • 10. Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952. MR 0045823
  • 11. W. W. Rogosinski. Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen. Math. Z., 35 (1932), 93-121.
  • 12. Glenn Schober, Univalent functions—selected topics, Lecture Notes in Mathematics, Vol. 478, Springer-Verlag, Berlin-New York, 1975. MR 0507770

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 30C45, 33C45

Retrieve articles in all journals with MSC (1991): 30C45, 33C45


Additional Information

E. Haliloglu
Email: halilogl@sariyer.cc.itu.edu.tr

DOI: http://dx.doi.org/10.1090/S0002-9947-97-01721-2
Keywords: Faber polynomials, Faber coefficients, Chebyshev polynomials, Jacobi elliptic sine function
Received by editor(s): October 17, 1994
Received by editor(s) in revised form: January 22, 1996
Article copyright: © Copyright 1997 American Mathematical Society