Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Verma type modules of level zero
for affine Lie algebras


Author: Viatcheslav Futorny
Journal: Trans. Amer. Math. Soc. 349 (1997), 2663-2685
MSC (1991): Primary 17B67
DOI: https://doi.org/10.1090/S0002-9947-97-01957-0
MathSciNet review: 1422606
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the structure of Verma type modules of level zero induced from non-standard Borel subalgebras of an affine Kac-Moody algebra. For such modules in ``general position'' we describe the unique irreducible quotients, construct a BGG type resolution and prove the BGG duality in certain categories. All results are extended to generalized Verma type modules of zero level.


References [Enhancements On Off] (What's this?)

  • 1. B. Cox, Verma modules induced from nonstandard Borel subalgebras, Pacific J. Math. 165 (1994), 269-294.MR 95m:17017
  • 2. B. Cox, Structure of the non-standard category of highest weight modules, Queen's Papers in Pure and Applied Math. 94 (1994), 35-47.MR 95d:17026
  • 3. B. Cox, V. Futorny, D. Melville, Categories of nonstandard highest weight modules for affine Lie algebras, Math. Z. 221 (1996), 193-209. CMP 96:08
  • 4. V. Doedhar, O. Gabber, V. Kac, Structure of some categories of representations of infinite dimensional Lie algebras, Adv. in Math. 45 (1982), 92-116. MR 83i:17012
  • 5. V. Futorny, Parabolic partitions of root systems and corresponding representations of affine Lie algebras, Preprint No. 1990-8, Inst. Math. Acad. Sci. Ukraine, Kiev, 1990, pp. 30-39. MR 92a:17036
  • 6. V. Futorny, The parabolic subsets of root systems and corresponding representations of affine Lie algebras, Contemp. Math. 131 (1992), 45-52.MR 93b:00030
  • 7. V. Futorny, Imaginary Verma modules for affine Lie algebras, Canad. Math. Bull., 37 (1994), 213-218.MR 95a:17030
  • 8. V. Futorny, Verma type modules over affine Lie algebras, Funkts. Anal. i ego Prilozhen. 27 (1993), no. 3, 92-94; English transl., Funct. Anal. Appl. 27 (1993), 224-225. CMP 96:05
  • 9. V. Futorny, H. Saifi, Modules of Verma type and new irreducible representations for affine Lie algebras, CMS Conference Proc. 14 (1993), 185-191.MR 94j:16002
  • 10. H.P. Jakobsen, V.G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, Lecture Notes in Physics, 226 (1985), 1-20. MR 87g:17020
  • 11. H.P. Jakobsen, V.G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, II, J. Funct. Anal. 82 (1989), 69-90. MR 89m:17032
  • 12. V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, third edition, 1990.MR 92k:17038
  • 13. R. Moody, A. Pianzola, Lie algebras with triangular decomposition, Wiley, 1995.MR 96d:17025
  • 14. A. Rocha-Caridi, N. Wallach, Projective modules over graded Lie algebras, Math. Z. 180 (1982), 151-177.MR 83h:17018

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 17B67

Retrieve articles in all journals with MSC (1991): 17B67


Additional Information

Viatcheslav Futorny
Affiliation: Department of Mathematics, Kiev University, Kiev, Ukraine 252033
Email: futorny@uni-alg.kiev.ua

DOI: https://doi.org/10.1090/S0002-9947-97-01957-0
Keywords: Affine Lie algebra, Verma type module, generalized Verma type module, BGG duality
Received by editor(s): March 27, 1995
Additional Notes: This work was done during the author’s visit at the Department of Mathematics, Queen’s University, whose generous support is greatly appreciated
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society