Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hecke algebras, $U_{q}sl_{n}$, and
the Donald-Flanigan conjecture for $S_{n}$


Authors: Murray Gerstenhaber and Mary E. Schaps
Journal: Trans. Amer. Math. Soc. 349 (1997), 3353-3371
MSC (1991): Primary 20C30; Secondary 17B35, 17B37, 20F99
DOI: https://doi.org/10.1090/S0002-9947-97-01761-3
MathSciNet review: 1390035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Donald-Flanigan conjecture asserts that the integral group ring $\mathbb {Z}G$ of a finite group $G$ can be deformed to an algebra $A$ over the power series ring $\mathbb {Z}[[t]]$ with underlying module $\mathbb {Z}G[[t]]$ such that if $p$ is any prime dividing $\#G$ then $A\otimes _{\mathbb {Z}[[t]]}\overline {\mathbb {F}_{p}((t))}$ is a direct sum of total matric algebras whose blocks are in natural bijection with and of the same dimensions as those of $\mathbb {C}G.$ We prove this for $G = S_{n}$ using the natural representation of its Hecke algebra $\mathcal {H}$ by quantum Yang-Baxter matrices to show that over $\mathbb {Z}[q]$ localized at the multiplicatively closed set generated by $q$ and all $i_{q^{2}} = 1+q^{2} + q^{4} + \dots + q^{2(i-1)}, i = 1,2,\dots , n$, the Hecke algebra becomes a direct sum of total matric algebras. The corresponding ``canonical" primitive idempotents are distinct from Wenzl's and in the classical case ($q=1$), from those of Young.


References [Enhancements On Off] (What's this?)

  • [CFW] M. Cohen, D. Fischman and S. Westreich, Schur's double centralizer theorem for triangular Hopf algebras, Proc. Amer. Math. Soc. 122 (1994), 19-29. MR 94k:16065
  • [CIK] C. W. Curtis, N. Iwahori and R. W. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $BN$-pairs, Publ. Math. I.H.E.S. 40 (1971), 81-116. MR 50:494
  • [D] V.G. Drinfel'd, Quantum groups, Proc. ICM 1986 (A.M. Gleason, ed.), Amer. Math. Soc., Providence, 1987, pp. 798-820. MR 89f:17017
  • [DF] J.D. Donald and D. Flanigan, A deformation-theoretic version of Maschke's theorem for modular group algebras: the commutative case, J. Algebra 29 (1974), 98-102. MR 49:7314
  • [DJ] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), 20-52. MR 88b:20065
  • [ESps] K. Erdmann and M. Schaps, Deformation of tame blocks and related algebras, Proceedings of the Conference on Quantum Deformations of Algebras and their Representations, Israel Math. Conf. Proc., Vol 7 (A. Joseph and S. Shnider, eds.), Amer. Math. Soc., Providence, 1993, pp. 25-44. MR 94m:16036
  • [F] D. Fischman, Schur's double centralizer theorem: a Hopf algebra approach, J. of Algebra 157 (1993), 331-340. MR 94e:16043
  • [FJL] P. Fleischmann, I. Janiszczak and W. Lempken, Finite groups have local non-Schur centralizers, Manuscripta Mathematica 80 (1993), 213-224. MR 94j:20031
  • [FRT] L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225. MR 90j:17039
  • [FT] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29:3538
  • [G] M. Gerstenhaber, On the deformation of rings and algebras III, Ann. of Math. 88 (1968), 1-34. MR 39:1521
  • [GG] M. Gerstenhaber and D. J. Green, A group theoretic consequence of the Donald-Flanigan conjecture, J. of Algebra 166 (1994), 356-363. MR 95f:20015
  • [GGSk1] M. Gerstenhaber, A. Giaquinto and S. D. Schack, Quantum symmetry, Quantum Groups (LNM 1510) (P.P. Kulish, ed.), Springer Verlag, Berlin, 1992, pp. 9-46. MR 93j:17028
  • [GGSk2] -, Construction of quantum groups from Belavin-Drinfel'd infinitesimals, Proceedings of the Conference on Quantum Deformations of Algebras and their Representations, Israel Math. Conf. Proc., Vol 7 (A. Joseph and S. Shnider, eds.), Amer. Math. Soc., Providence, 1993, pp. 45-64. MR 94k:17022
  • [GSk1] M. Gerstenhaber and S. D. Schack, Bialgebra cohomology, deformations, and quantum groups, Proc. Nat. Acad. Sci. USA 87 (1990), 478-481. MR 90j:16062
  • [GSk2] -, Algebras, bialgebras, quantum groups, and algebraic deformations, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (M. Gerstenhaber and J. Stasheff, eds.), Contemporary Mathematics, Vol. 134, Amer. Math. Soc., Providence, 1992, pp. 51-92. MR 94b:16045
  • [GSps] M. Gerstenhaber and M. Schaps, The modular version of Maschke's theorem for normal abelian $p$-Sylows, J. Pure Appl. Algebra 108 (1996), 257-264. CMP 96:11
  • [Hoe] P. N. Hoefsmit, Representations of Hecke algebras of finite groups with BN pairs of classical type, Ph. D. Thesis, University of British Columbia, 1974.
  • [Hu] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge U. Press, Cambridge, U.K. and New York, 1990. MR 92h:20002
  • [J1] M. Jimbo, A $q$-difference analogue of $U(\mathfrak {g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 64-69. MR 86k:17008
  • [J2] -, A $q$-analogue of $U(\mathfrak {gl}(N+1)),$ Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252. MR 87k:17011
  • [J3] -, Introduction to the Yang-Baxter equation, Braid Group, Knot Theory and Statistical Mechanics (C. N. Yang and M. L. Ge, eds.), World Scientific, Singapore, 1989, pp. 111-134. MR 92i:57011
  • [K] A. W. Knapp, Lie Groups, Lie Algebras, and Cohomology, Mathematical Notes 34, Princeton University Press, Princeton, 1988. MR 89j:22034
  • [L] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249. MR 89k:17029
  • [M] G. Michler, Maximal orders and deformation of modular group algebras, Abelian Groups and Noncommutative Rings (L. Fuchs et. al., eds.), Contemporary Math., Vol 130, Amer. Math. Soc., Providence, 1992, pp. 275-288. MR 93j:20013
  • [RW] A. Ram and H. Wenzl, Matrix units for centralizer algebras, J. of Algebra 145 (1992), 378-395. MR 93g:16024
  • [R] M. Rosso, Finite-dimensional representations of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593. MR 90c:17019
  • [Shn] S. Shnider, Deformation cohomology for bialgebras and quasi-bialgebras, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (M. Gerstenhaber and J. Stasheff, eds.), Contemporary Mathematics, Vol. 134, Amer. Math. Soc., Providence, 1992, pp. 259-296. MR 94e:16048
  • [Sps] M. Schaps, A modular version of Maschke's theorem for groups with cyclic $p$-Sylow subgroup, J. Algebra 163 (1994), 623-635. MR 95b:20015
  • [Sps2] -, Integral and $p$-modular semisimple deformations for $p$-solvable groups of finite representation type, J. Austral. Math. Soc. (Series A) 50 (1991), 213-232. MR 92b:16067
  • [Sps3] -, Liftable deformations and Hecke algebras, Algebraic groups and their generalizations (W. J. Haboush and B. J. Parshall, eds.), Proc. Sympos. Pure Math., Vol. 56, Part 1, Amer. Math. Soc., Providence, 1994, pp. 155-173. MR 95e:16028
  • [S] I. Schur, Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen, Inaugural-Dissertation, Friedrich-Wilhelms-Universität zu Berlin, Berlin, 1901; reprinted in his Gesammelte Abhandlungen, Vol. I, Springer-Verlag, Berlin, 1973. MR 57:2858a
  • [W] H. Wenzl, Hecke algebras of type $A_{n}$ and subfactors, Invent. Math. 92 (1988), 349-383. MR 90b:46118

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 20C30, 17B35, 17B37, 20F99

Retrieve articles in all journals with MSC (1991): 20C30, 17B35, 17B37, 20F99


Additional Information

Murray Gerstenhaber
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6395
Email: mgersten@mail.sas.upenn.edu or murray@math.upenn.edu

Mary E. Schaps
Affiliation: Department of Mathematics and Computer Science, Bar Ilan University, Ramat-Gan 52900, Israel
Email: mschaps@macs.biu.ac.il

DOI: https://doi.org/10.1090/S0002-9947-97-01761-3
Keywords: Hecke algebra, representations, symmetric group, deformations, quantization, Donald-Flanigan conjecture
Received by editor(s): February 1, 1994
Received by editor(s) in revised form: February 26, 1996
Additional Notes: Research of the first author was partially supported by a grant from the NSA
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society