Kernel of locally nilpotent -derivations

of

Authors:
S. M. Bhatwadekar and Amartya K. Dutta

Journal:
Trans. Amer. Math. Soc. **349** (1997), 3303-3319

MSC (1991):
Primary 13B10; Secondary 13A30

MathSciNet review:
1422595

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the kernel of a non-zero locally nilpotent -derivation of the polynomial ring over a noetherian integral domain containing a field of characteristic zero. We show that if is normal then the kernel has a graded -algebra structure isomorphic to the symbolic Rees algebra of an unmixed ideal of height one in , and, conversely, the symbolic Rees algebra of any unmixed height one ideal in can be embedded in as the kernel of a locally nilpotent -derivation of . We also give a necessary and sufficient criterion for the kernel to be a polynomial ring in general.

**[A-E-H]**Shreeram S. Abhyankar, William Heinzer, and Paul Eakin,*On the uniqueness of the coefficient ring in a polynomial ring*, J. Algebra**23**(1972), 310–342. MR**0306173****[A-K]**Allen Altman and Steven Kleiman,*Introduction to Grothendieck duality theory*, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR**0274461****[B-C-W]**H. Bass, E. H. Connell, and D. L. Wright,*Locally polynomial algebras are symmetric algebras*, Invent. Math.**38**(1976/77), no. 3, 279–299. MR**0432626****[B-D]**S. M. Bhatwadekar and Amartya K. Dutta,*On residual variables and stably polynomial algebras*, Comm. Algebra**21**(1993), no. 2, 635–645. MR**1199695**, 10.1080/00927879308824585**[B-H]**Winfried Bruns and Jürgen Herzog,*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956****[C]**H. L. Manocha and J. B. Srivastava (eds.),*Algebra and its applications*, Lecture Notes in Pure and Applied Mathematics, vol. 91, Marcel Dekker, Inc., New York, 1984. Papers from the international symposium held at New Delhi, December 21–25, 1981. MR**750836****[D-F]**D. Daigle and G. Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of , Preprint.**[G]**José M. Giral,*Krull dimension, transcendence degree and subalgebras of finitely generated algebras*, Arch. Math. (Basel)**36**(1981), no. 4, 305–312. MR**623141**, 10.1007/BF01223706**[N]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[O]**Nobuharu Onoda,*Subrings of finitely generated rings over a pseudogeometric ring*, Japan. J. Math. (N.S.)**10**(1984), no. 1, 29–53. MR**884429****[R]**D. Rees,*On a problem of Zariski*, Illinois J. Math.**2**(1958), 145–149. MR**0095843****[Rn]**Rudolf Rentschler,*Opérations du groupe additif sur le plan affine*, C. R. Acad. Sci. Paris Sér. A-B**267**(1968), A384–A387 (French). MR**0232770****[R-S]**Peter Russell and Avinash Sathaye,*On finding and cancelling variables in 𝑘[𝑋,𝑌,𝑍]*, J. Algebra**57**(1979), no. 1, 151–166. MR**533106**, 10.1016/0021-8693(79)90214-X

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
13B10,
13A30

Retrieve articles in all journals with MSC (1991): 13B10, 13A30

Additional Information

**S. M. Bhatwadekar**

Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400 005, India

Email:
smb@tifrvax.tifr.res.in

**Amartya K. Dutta**

Affiliation:
Stat - Math Unit, Indian Statistical Institute, 203, B.T. Road, Calcutta-700 035, India

Email:
amartya@isical.ernet.in

DOI:
http://dx.doi.org/10.1090/S0002-9947-97-01946-6

Keywords:
Locally nilpotent derivations,
inert subrings,
symbolic Rees algebra

Received by editor(s):
January 11, 1996

Article copyright:
© Copyright 1997
American Mathematical Society