Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Spherical functions on symmetric cones

Author: P. Sawyer
Journal: Trans. Amer. Math. Soc. 349 (1997), 3569-3584
MSC (1991): Primary 33C55; Secondary 53C35, 17C20, 17C27, 33C45
MathSciNet review: 1325919
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we obtain a recursive formula for the spherical functions associated with the symmetric cone of a formally real Jordan algebra. We use this formula as an inspiration for a similar recursive formula involving the Jack polynomials.

References [Enhancements On Off] (What's this?)

  • 1. H. Braun and M. Koecher, Jordan Algebren, Springer-Verlag, Berlin and Heidelberg, 1966. MR 34:4310
  • 2. Jacques Faraut, Algèbres de Jordan et cônes symétriques, Ecole CIMPA - Université de Poitiers, 22 Août - 16 Septembre, 1988.
  • 3. Jacques Faraut, Fonctions de Legendre sur les algèbres de Jordan, CWI Quarterly 5, no. 4, (1992), 309-320. MR 94e:33025
  • 4. Kenneth I. Gross and D. Richards, Special functions of matrix argument. I: Algebraic induction, zonal polynomials, and hypergeometric functions, Transactions of the American Mathematical Society 301 (1987), 781-811. MR 88m:22018
  • 5. Sigurdur Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299. MR 22:8457
  • 6. Sigurdur Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. MR 80k:53081
  • 7. Ulrich Hirzebruch, Über Jordan-Algebren und kompakte Riemannsche symmetrische Räume vom Rang 1, Math. Zeitschr. 90 (1965), 339-354. MR 32:6371
  • 8. Carl S. Herz, Bessel functions of matrix arguments, Annals of Mathematics 61 (1955), 474-523. MR 16:1107e
  • 9. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. MR 84g:05003
  • 10. I. G. Macdonald, Commuting differential operators and zonal spherical functions, Lecture Notes in Mathematics, vol. 1271, Springer-Verlag, New York, 1987, pp. 189-200. MR 89e:43025
  • 11. R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982. MR 84c:62073
  • 12. Patrice Sawyer, The heat equation on the symmetric space associated to $% \mathbf {SL}(n, \bold {R})$, Thesis, McGill University, 1989.
  • 13. Patrice Sawyer, The heat equation on spaces of positive definite matrices, Canadian Journal of Mathematics 44 (1992), 624-651. MR 94c:58202
  • 14. Patrice Sawyer, On an upper bound for the heat kernel on $% \mathbf {SU}^\star (2n)/% \mathbf {Sp}(n)$, Canadian Bulletin of Mathematics 37 (1994), 408-418. MR 95k:58156
  • 15. Richard P. Stanley. Some combinatorial properties of Jack symmetric polynomials, Advances in Mathematics 77 (1989), 76-115. MR 90g:05020
  • 16. Hermann Weyl, The Classical Groups, 3rd ed., Princeton University Press, Princeton, New Jersey, 1946. MR 1:42c (1st ed.)
  • 17. ZhiMin Yan, Generalized hypergeometric functions and Laguerre polynomials in two variables, Contemporary Mathematics 138 (1992), 239-259. MR 94j:33019

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 33C55, 53C35, 17C20, 17C27, 33C45

Retrieve articles in all journals with MSC (1991): 33C55, 53C35, 17C20, 17C27, 33C45

Additional Information

P. Sawyer
Affiliation: Department of Mathematics and Computer Science, Laurentian University, Sudbury (Ontario) Canada P3E 2C6

Received by editor(s): March 15, 1994
Received by editor(s) in revised form: April 3, 1995
Additional Notes: Research supported by a grant from the National Sciences Research Council of Canada.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society