Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Brauer group
of Yetter-Drinfel'd module algebras


Authors: S. Caenepeel, F. Van Oystaeyen and Y. H. Zhang
Journal: Trans. Amer. Math. Soc. 349 (1997), 3737-3771
MSC (1991): Primary 16A16, 16A24
DOI: https://doi.org/10.1090/S0002-9947-97-01839-4
MathSciNet review: 1454120
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be a Hopf algebra with bijective antipode. In a previous paper, we introduced $H$-Azumaya Yetter-Drinfel'd module algebras, and the Brauer group ${\mathrm {BQ}}(k,H)$ classifying them. We continue our study of ${\mathrm {BQ}}(k,H)$, and we generalize some properties that were previously known for the Brauer-Long group. We also investigate separability properties for $H$-Azumaya algebras, and this leads to the notion of strongly separable $H$-Azumaya algebra, and to a new subgroup of the Brauer group ${\mathrm {BQ}}(k,H)$.


References [Enhancements On Off] (What's this?)

  • 1. M. Beattie, Brauer groups of $H$-module and $H$-dimodule algebras, Queen's University, Kingston, Ontario, 1976.
  • 2. M. Beattie, A direct sum decomposition for the Brauer group of $H$-module algebras, J. Alg. 43 (1976), 686-693. MR 56:333
  • 3. M. Beattie, The Brauer group of central separable G-Azumaya algebras, J. Alg. 54 (1978), 516-525. MR 81h:16010
  • 4. S. Caenepeel, A note on inner actions of Hopf algebras, Proc. Amer. Math. Soc. 113 (1991), 31-39. MR 91k:16026
  • 5. S. Caenepeel, Computing the Brauer-Long group of a Hopf algebra I: the cohomological theory, Israel J. Math. 72 (1990), 38-83. MR 92f:16046
  • 6. S. Caenepeel, Computing the Brauer-Long group of a Hopf algebra II: the Skolem-Noether theory, J. Pure Appl. Alg. 84 (1993),107-144. MR 93m:16026
  • 7. S. Caenepeel and M. Beattie, A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings, Trans. Amer. Math. Soc. 324 (1991), 747-775. MR 91h:16030
  • 8. S. Caenepeel, F.Van Oystaeyen and Y.H.Zhang, Quantum Yang-Baxter module algebras, K-Theory 8 (1994), 231-255. MR 95e:16031
  • 9. L.N. Childs, G. Garfinkel and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299-326. MR 50:2145
  • 10. L.N. Childs, The Brauer group of graded Azumaya algebras II: graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975),137-160. MR 51:471
  • 11. A.P. Deegan, A subgroup of the generalized Brauer group of $\Gamma $-Azumaya algebras, J.London Math. Soc. 2 (1981), 223-240. MR 82j:16011
  • 12. V.G. Drinfel'd, Quantum groups, Proc. of the Int. Congress of Math., Berkeley, Ca. (1987), 798-819. MR 89f:17017
  • 13. M.A. Knus and M. Ojanguren, Théorie de la descente et algèbres d'Azumaya, Lecture Notes in Math. 389, Springer-Verlag, Berlin, 1974. MR 54:5209
  • 14. F.W. Long, The Brauer group of dimodule algebras, J. Alg. 31 (1974), 559-601. MR 50:9941
  • 15. L.A. Lambe, D.E. Radford, Algebraic aspects of the quantum Yang-Baxter equation, J. Alg. 154 (1992), 228-288. MR 94b:17026
  • 16. S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A(5) (1990), 1-91. MR 90k:16008
  • 17. S. Majid, Doubles of quasitriangular Hopf algebras, Comm Alg. 19 (1991), 3061-3073. MR 92k:16052
  • 18. S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conf. Ser. Math., no. 82, Amer. Math. Soc., Providence, 1993. MR 94i:16019
  • 19. M. Orzech, Brauer groups of graded algebras, Lecture Notes in Math. 549, Springer-Verlag, Berlin, 1976, 134-147. MR 56:8545
  • 20. M. Orzech, On the Brauer group of algebras having a grading and an action, Can. J. Math. 28 (1976), 533-552; correction, ibid. 32 (1980), 1523-1524. MR 53:8115; MR 82j:16014
  • 21. B. Pareigis, Non-additive ring and module theory IV, the Brauer group of a symmetric monoidal category, Lecture Notes in Math. 549, Springer-Verlag, Berlin, 1976, 112-133. MR 58:16834c
  • 22. D. E. Radford, Minimal quasitriangular Hopf algebras, J. Alg. 157 (1993), 285-315. MR 94c:16052
  • 23. D.E. Radford and J. Towber, Yetter-Drinfel'd categories associated to an arbitrary bialgebra, J. Pure Appl. Algebra 87 (1993), 259-279. MR 94f:16060
  • 24. M.E. Sweedler, Hopf Algebras, Benjamin, 1969. MR 40:5705
  • 25. F. Van Oystaeyen and Y. H. Zhang, The Brauer group of a braided monoidal category, preprint 1996.
  • 26. C.T.C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1964), 187-199. MR 29:4771
  • 27. D.N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), 261-290. MR 91k:16028

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 16A16, 16A24

Retrieve articles in all journals with MSC (1991): 16A16, 16A24


Additional Information

S. Caenepeel
Affiliation: Faculty of Applied Sciences, Free University of Brussels, VUB, Pleinlaan 2, B-1050 Brussels, Belgium
Email: scaenepe@vnet3.vub.ac.be

F. Van Oystaeyen
Affiliation: Department of Mathematics, University of Antwerp, UIA, Universiteitsplein 1, B-2610 Wilrijk, Belgium
Email: francin@wins.uia.ac.be

Y. H. Zhang
Email: zhang@wins.uia.ac.be

DOI: https://doi.org/10.1090/S0002-9947-97-01839-4
Keywords: Brauer group, Azumaya algebra, Hopf algebra, Yetter-Drinfel\textprime d module, separable algebra
Received by editor(s): August 24, 1994
Received by editor(s) in revised form: March 19, 1996
Additional Notes: The third author wishes to thank the Free University of Brussels for its financial support during the time when this paper was written.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society