The Szego curve, zero distribution and weighted approximation
Authors:
Igor E. Pritsker and Richard S. Varga
Journal:
Trans. Amer. Math. Soc. 349 (1997), 40854105
MSC (1991):
Primary 30E10; Secondary 30C15, 31A15, 41A30
MathSciNet review:
1407500
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In 1924, Szeg\H{o} showed that the zeros of the normalized partial sums, , of tended to what is now called the Szeg\H{o} curve , where Using modern methods of weighted potential theory, these zero distribution results of Szeg\H{o} can be essentially recovered, along with an asymptotic formula for the weighted partial sums . We show that is the largest universal domain such that the weighted polynomials are dense in the set of functions analytic in . As an example of such results, it is shown that if is analytic in and continuous on with , then there is a sequence of polynomials , with , such that where denotes the supremum norm on . Similar results are also derived for disks.
 1.
P.
B. Borwein and Weiyu
Chen, Incomplete rational approximation in the complex plane,
Constr. Approx. 11 (1995), no. 1, 85–106. MR 1323965
(95k:41024), http://dx.doi.org/10.1007/BF01294340
 2.
J.
D. Buckholtz, A characterization of the exponential series,
Amer. Math. Monthly 73 (1966), no. 4, 121–123.
MR
0202979 (34 #2838)
 3.
R.
S. Varga and A.
J. Carpenter, Asymptotics for the zeros of the partial sums of
𝑒^{𝑧}. II, Computational methods and function theory
(Valparaíso, 1989) Lecture Notes in Math., vol. 1435,
Springer, Berlin, 1990, pp. 201–207. MR 1071774
(92m:33004), http://dx.doi.org/10.1007/BFb0087909
 4.
A.
J. Carpenter, R.
S. Varga, and J.
Waldvogel, Asymptotics for the zeros of the partial sums of
𝑒^{𝑧}. I, Proceedings of the U.S.Western Europe
Regional Conference on Padé Approximants and Related Topics
(Boulder, CO, 1988), 1991, pp. 99–120. MR 1113918
(92m:33003), http://dx.doi.org/10.1216/rmjm/1181072998
 5.
Dieter
Gaier, Lectures on complex approximation, Birkhäuser
Boston, Inc., Boston, MA, 1987. Translated from the German by Renate
McLaughlin. MR
894920 (88i:30059b)
 6.
Peter
Henrici, Applied and computational complex analysis. Vol. 2,
Wiley Interscience [John Wiley & Sons], New YorkLondonSydney, 1977.
Special functions—integral
transforms—asymptotics—continued fractions. MR 0453984
(56 #12235)
 7.
N.
S. Landkof, Foundations of modern potential theory,
SpringerVerlag, New YorkHeidelberg, 1972. Translated from the Russian by
A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band
180. MR
0350027 (50 #2520)
 8.
G.
G. Lorentz, Approximation by incomplete polynomials (problems and
results), Padé and rational approximation (Proc. Internat.
Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New
York, 1977, pp. 289–302. MR 0467089
(57 #6956)
 9.
H.
N. Mhaskar and E.
B. Saff, The distribution of zeros of asymptotically extremal
polynomials, J. Approx. Theory 65 (1991), no. 3,
279–300. MR 1109409
(92d:30005), http://dx.doi.org/10.1016/00219045(91)90093P
 10.
H.
N. Mhaskar and E.
B. Saff, Weighted analogues of capacity, transfinite diameter, and
Chebyshev constant, Constr. Approx. 8 (1992),
no. 1, 105–124. MR 1142697
(93a:31004), http://dx.doi.org/10.1007/BF01208909
 11.
E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, SpringerVerlag, Heidelberg, 1997.
 12.
G. Szeg\H{o}, Über eine Eigenshaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924), 5064.
 13.
Vilmos
Totik, Weighted approximation with varying weight, Lecture
Notes in Mathematics, vol. 1569, SpringerVerlag, Berlin, 1994. MR 1290789
(96f:41002)
 14.
J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Colloquium Publications, vol. 20, Amer. Math. Soc., Providence, 1969. MR 36:1672b (earlier ed.)
 1.
 P. B. Borwein and W. Chen, Incomplete rational approximation in the complex plane, Constr. Approx. 11 (1995), 85106. MR 95k:41024
 2.
 J. D. Buckholtz, A characterization of the exponential series, Amer. Math. Monthly 73, Part II (1966), 121123. MR 34:2838
 3.
 R. S. Varga and A. J. Carpenter, Asymptotics for the zeros of the partial sums of .II, Computational Methods and Function Theory, Lecture Notes in Math., vol. 1435, pp. 201207, SpringerVerlag, Heidelberg, 1990. MR 92m:33004
 4.
 A. J. Carpenter, R. S. Varga and J. Waldvogel, Asymptotics for the zeros of the partial sums of . I., Rocky Mount. J. of Math. 21 (1991), 99119. MR 92m:33003
 5.
 D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston, 1987. MR 88i:30059b
 6.
 P. Henrici, Applied and Computational Complex Analysis, vol. 2, John Wiley and Sons, New York, 1977. MR 56:12235
 7.
 N. S. Landkof, Foundations of Modern Potential Theory, SpringerVerlag, Berlin, 1972. MR 50:2520
 8.
 G. G. Lorentz, Approximation by incomplete polynomials (problems and results), Padé and Rational Approximations: Theory and Applications (E. B. Saff and R. S. Varga, eds.), pp. 289302, Academic Press, New York, 1977. MR 57:6956
 9.
 H. N. Mhaskar and E. B. Saff, The distribution of zeros of asymptotically extremal polynomials, J. Approx. Theory 65 (1991), 279300. MR 92d:30005
 10.
 H. N. Mhaskar and E. B. Saff, Weighted analogues of capacity, transfinite diameter and Chebyshev constant, Constr. Approx. 8 (1992), 105124. MR 93a:31004
 11.
 E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, SpringerVerlag, Heidelberg, 1997.
 12.
 G. Szeg\H{o}, Über eine Eigenshaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924), 5064.
 13.
 V. Totik, Weighted Approximation with Varying Weight, Lecture Notes in Math., vol. 1569, SpringerVerlag, Heidelberg, 1994. MR 96f:41002
 14.
 J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Colloquium Publications, vol. 20, Amer. Math. Soc., Providence, 1969. MR 36:1672b (earlier ed.)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
30E10,
30C15,
31A15,
41A30
Retrieve articles in all journals
with MSC (1991):
30E10,
30C15,
31A15,
41A30
Additional Information
Igor E. Pritsker
Affiliation:
Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
Email:
pritsker@mcs.kent.edu
Richard S. Varga
Affiliation:
Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
Email:
varga@mcs.kent.edu
DOI:
http://dx.doi.org/10.1090/S0002994797018898
PII:
S 00029947(97)018898
Keywords:
Szeg\H{o} curve,
weighted polynomials,
weighted energy problem,
extremal measure,
logarithmic potential,
balayage,
modified Robin constant
Received by editor(s):
March 30, 1996
Article copyright:
© Copyright 1997
American Mathematical Society
