Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Existence of Conservation Laws
and characterization of recursion operators
for completely integrable systems

Authors: Joseph Grifone and Mohamad Mehdi
Journal: Trans. Amer. Math. Soc. 349 (1997), 4609-4633
MSC (1991): Primary 35G20, 35N10; Secondary 58F07, 58G30.
MathSciNet review: 1432200
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the Spencer-Goldschmidt version of the Cartan-Kähler theorem, we give conditions for (local) existence of conservation laws for analytical quasi-linear systems of two independent variables. This result is applied to characterize the recursion operator (in the sense of Magri) of completely integrable systems.

References [Enhancements On Off] (What's this?)

  • 1. R. Bryant, S.S. Chern, R. Gardner, H. Goldschmidt, P. Griffiths, Exterior Differential Systems, Math. Sci. Res. Inst. Publ. 18, Springer-Verlag, New-York, Berlin, Heidelberg, 1991. MR 92h:58007
  • 2. P. Cabau, J. Grifone, M. Mehdi, Existence de lois de conservation dans le cas cyclique, Ann. Inst. Henri Poincaré Phys. Théor., 55 (1991), 789-803. MR 92k:58283
  • 3. E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Paris: Hermann, 1945 MR 7:520d
  • 4. L. Ehrenpreis, V.W. Guillemin and S. Sternberg, On Spencer's estimate for $\delta $-Poincaré, Ann. of Math., 82 (1965), 128-138. MR 32:4709
  • 5. A. Frölicher, A. Nijenhuis, Theory of Vector-Valued Differential Forms, I, Nederl. Akad. Wetensch. Proc., 59 (1956) 338-359. MR 18:5569c
  • 6. J. Gasqui, Formal Integrability of Systems of Partial Differential Equations, Nonlinear Equations in Classical and Quantum Field Theory - N. Sanchez (ed.) Lect. Notes Physics, 226 (1985), Springer Verlag, 21-36. MR 86k:58140
  • 7. H. Goldschmidt, Integrability criteria for systems of non-linear partial differential equations Journ. Differ. Geom., 1 (1967) 269-307. MR 37:1746
  • 8. J. Grifone, M. Mehdi, Existence of Conservation Laws and Characterisation of Recursion Operators for Completely Integrable Systems. Prépublication n. 27 du Laboratoire de Topologie et Geometrie, Université de Toulouse III, Juin 1993
  • 9. P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10(1957), 537-566. MR 20:176
  • 10. B.Malgrange, Equations de Lie II, J. Diff. Geom., 7 (1972), 117-141. MR 48:5128
  • 11. F. Magri, C. Morosi, A geometrical characterization of integrable hamiltonian systems, Quaderno 5/19 Università di Milano (1984)
  • 12. M. Mehdi, Existence de lois de conservation et de systèmes bihamiltoniens Thèse, Toulouse (1991)
  • 13. H. Osborn, The Existence of Conservation Laws, I Ann. of Math., 69 (1959), 105-118. MR 21:760
  • 14. H. Osborn, Les lois de conservation, Ann. Inst. Fourier, Grenoble, 14 (1964), 71-82. MR 30:2425
  • 15. D.C. Spencer, Overdetermined Systems of Linear Partial Differential Equations, Bull. A.M.S., 75 (1969), 179-239. MR 39:3533
  • 16. F.J. Turiel, Classification locale d'un couple de formes symplectiques Poisson-compatibles, C.R. Acad. Sci. Paris, Sér. I Math. 308 (1989), 573-578. MR 90g:58039
  • 17. F.J. Turiel, Classification locale des tenseurs de type $(1,1)$ presque plats, C.R. Acad. Sci. Paris, Sér. I Math. 319 (1994), 471-474. MR 95f:53061

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35G20, 35N10, 58F07, 58G30.

Retrieve articles in all journals with MSC (1991): 35G20, 35N10, 58F07, 58G30.

Additional Information

Joseph Grifone
Affiliation: Laboratoire Emile Picard, U.M.R. C.N.R.S. 5580, Département de Mathématiques, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

Mohamad Mehdi
Affiliation: Université Libanaise, Beyrouth, BP 13.5292 Chouran, Lebanon

Keywords: Quasi-linear partial differential equations, conservation laws, completely integrable systems, overdetermined system of partial differential equations, Cartan-K\"ahler theorem, Poisson-Nijenhuis manifolds
Received by editor(s): November 28, 1994
Received by editor(s) in revised form: April 3, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society