Some ramifications of a theorem

of Boas and Pollard concerning

the completion of a set of functions in

Authors:
K. S. Kazarian and Robert E. Zink

Journal:
Trans. Amer. Math. Soc. **349** (1997), 4367-4383

MSC (1991):
Primary 42B65, 42C15, 46B15, 41A30, 41A58

DOI:
https://doi.org/10.1090/S0002-9947-97-02034-5

MathSciNet review:
1443881

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: About fifty years ago, R. P. Boas and Harry Pollard proved that an orthonormal system that is completable by the adjunction of a finite number of functions also can be completed by multiplying the elements of the given system by a fixed, bounded, nonnegative measurable function. In subsequent years, several variations and extensions of this theorem have been given by a number of other investigators, and this program is continued here. A mildly surprising corollary of one of the results is that the trigonometric and Walsh systems can be multiplicatively transformed into quasibases for .

**1.**Stefan Banach,*Théorie des Opérations Linéaires*, Monografje Matematyczne, Warszawa, 1932; latest reprint, Éditions Jacques Gabay, Sceaux, 1993. MR**97d:01035****2.**Ben-Ami Braun,*On the multiplicative completion of certain basic sequences in ,*, Trans. Amer. Math. Soc.**176**(1973), 499-508. MR**47:2331****3.**R. P. Boas and Harry Pollard,*The multiplicative completion of sets of functions*, Bull. Amer. Math. Soc.**54**(1948), 518-522. MR**10:189b****4.**V. F. Gaposhkin,*Trigonometric Cesàro bases in the spaces of functions integrable with power weight*, Analysis Math.**8**(1982), 103-124. MR**82c:42017****5.**Bernard R. Gelbaum,*Notes on Banach spaces and bases*, An. Acad. Brasil. Ci.**30**(1958), 29-36. MR**20:5419****6.**Casper Goffman and Daniel Waterman,*Basis sequences in the space of measurable functions*, Proc. Amer. Math. Soc.**11**(1960), 211-213. MR**22:2886****7.**Stefan Kaczmarz and Hugo Steinhaus,*Theorie der Orthogonalreihen*, Monografje Matematyczne, Warszawa-Lwów, 1935; reprint, Chelsea, New York, 1951.**8.**K. S. Kazarian,*On the multiplicative completion of basic sequences to bases in ,*, Doklady Akad. Nauk Arm. SSR**62**(1976), 203-209 (Russian). MR**55:3675****9.**-,*On the multiplicative completion of some incomplete orthonormal systems to bases in ,*, Analysis Math.**4**(1978), 37-52 (Russian). MR**58:2001****10.**-,*On bases and unconditional bases in the spaces ,*, Stud. Math.**71**(1982), 227-249. MR**84d:42037****11.**-,*On multiplicative completion of some systems*, Izv. Akad. Nauk Arm. SSR Ser. Math.**13**(1978), 315-351 (Russian). MR**80j:42038****12.**-,*On multiplicative completion of uniformly bounded orthonormal systems to basis in ,*, Izv. Akad. Arm. SSR Ser. Math.**18**(1983), 344-361; English trans. in Soviet Jour. Contemp. Math. Anal.**18**(1983). MR**86a:42031****13.**-,*Improving a theorem of R. Boas and H. Pollard on the multiplicative completion*, Izv. Akad. Arm. SSR Ser. Math.**25**(1990), 409-412; English trans. in Soviet Jour. Contemp. Math. Anal.**25**(1990). MR**92g:42019****14.**-,*Summability of generalized Fourier series and Dirichlet's problem in and weighted -spaces*, Analysis Math.**13**(1987), 173-197. MR**89b:42023****15.**J. J. Price and Robert E. Zink,*On sets of functions that can be multiplicatively completed*, Ann. Math.**82**(1965), 139-145. MR**31:1349****16.**Ivan Singer,*Bases in Banach Spaces, II*, Springer-Verlag, Berlin, Heidelberg, New York, 1981. MR**82k:46024****17.**A. A. Talalyan,*On the convergence almost everywhere of subsequences of partial sums of general orthogonal series*, Izv. Akad. Nauk Arm. SSR Izv. Fiz-Mat. Estest. Tehn Nauki**10**(1957), 17-34. MR**19:742b****18.**-,*The representation of measurable functions by series*, Uspekhi Math. Nauk**15**(1960), no. 5, 77-142 (Russian); English translation in Russian Math. Surveys**15**(1960), no. 5, 77-136. MR**23:A2704****19.**A. Zygmund,*Trigonometric Series*, 2nd ed., Vol. I, Cambridge Univ. Press, London, 1959. MR**21:6498**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
42B65,
42C15,
46B15,
41A30,
41A58

Retrieve articles in all journals with MSC (1991): 42B65, 42C15, 46B15, 41A30, 41A58

Additional Information

**K. S. Kazarian**

Affiliation:
Departamento de Matemáticas, C-XV, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
Institute of Mathematics of the National Academy of Sciences, av. Marshal Bagra- mian, 24-b, 375019 Erevan, Republica Armenia

Email:
kazaros.kazarian@uam.es

**Robert E. Zink**

Affiliation:
Department of Mathematics, Purdue University, 1395 Mathematical Sciences Building, West Lafayette, Indiana 47907-1395, USA

Email:
zink@math.purdue.edu

DOI:
https://doi.org/10.1090/S0002-9947-97-02034-5

Keywords:
Multiplicative completion,
weighted $L^{p}$-spaces,
Schauder basis,
quasibasis,
$M$-basis,
approximate continuity

Received by editor(s):
March 8, 1995

Received by editor(s) in revised form:
July 21, 1995

Additional Notes:
The first author was supported by DGICYT Spain, under Grant PB94-0149, and also by Grant MVR000 from the I.S.F

Article copyright:
© Copyright 1997
American Mathematical Society