Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compact groups and fixed point sets


Authors: Alex Chigogidze, Karl H. Hofmann and John R. Martin
Journal: Trans. Amer. Math. Soc. 349 (1997), 4537-4554
MSC (1991): Primary 22C05, 54H25; Secondary 22D35
DOI: https://doi.org/10.1090/S0002-9947-97-02059-X
MathSciNet review: 1451595
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some structure theorems for compact abelian groups are derived and used to show that every closed subset of an infinite compact metrizable group is the fixed point set of an autohomeomorphism. It is also shown that any metrizable product containing a positive-dimensional compact group as a factor has the property that every closed subset is the fixed point set of an autohomeomorphism.


References [Enhancements On Off] (What's this?)

  • 1. P. S. Alexandrov and P. S. Urysohn, Über nulldimensionale Mengen, Math. Ann. 98 (1928), 89-106.
  • 2. A. Beck, On invariant sets, Ann. of Math. 67 (1958), 99-103. MR 19:1064c
  • 3. N. Bourbaki, Groupes et algèbres de Lie, Chap. IX, Masson, Paris, 1982. MR 84:22001
  • 4. N. Bourbaki, Topologie générale, Herman, Paris, 1974. MR 30:3439 (earlier ed.)
  • 5. L. E. J. Brouwer, On the structure of perfect sets of points, Proc. Akad. Amsterdam 12 (1910), 785-794.
  • 6. A. Chigogidze and J. R. Martin, Fixed point sets of Tychonov cubes, Topology Appl. 64 (1995), 201-218. MR 96f:54049
  • 7. -, Fixed point sets of autohomeomorphisms of uncountable products, Topology Appl., to appear.
  • 8. J. Dixmier, Quelques propriétés des groupes abéliens localement compacts, Bull. Sci. Math. (2) 81 (1957), 38-48. MR 20:3196
  • 9. T. Fay, E. Oxford, and G. Wells, Preradicals in abelian groups, Houston J. Math. 8 (1982), 39-52. MR 83m:20074
  • 10. K. H. Hofmann, Sur la décomposition semidirecte de groupes compacts connexes, Symposia Mathematica 26 (1975), 471-476. MR 53:5805
  • 11. K. H. Hofmann and P. S. Mostert, Elements of Compact Semigroups, Charles E. Merill Books, Columbus, OH, 1966. MR 35:285
  • 12. Y. Iwamoto, Fixed point sets of transformation groups of Menger manifolds, their pseudointeriors and their pseudo-boundaries, Topology Appl. 68 (1990), 267-283. MR 97a:54035
  • 13. J. R. Martin, Fixed point sets of homeomorphisms of metric products, Proc. Amer. Math. Soc. 103 (1988), 1293-1298. MR 89h:55003
  • 14. J. R. Martin, L. G. Oversteegen and E.D.Tymchatyn, Fixed point sets of products and cones, Pacific J. Math. 101 (1982), 133-139. MR 83j:54025
  • 15. J. R. Martin and S. B. Nadler, Examples and questions in the theory of fixed point sets, Can. J. Math. 31 (1979), 1017-1032. MR 80m:54059
  • 16. J. R. Martin and W. A. R. Weiss, Fixed point sets of metric and nonmetric spaces, Trans. Amer. Math. Soc. 284 (1984), 337-353. MR 85h:54085
  • 17. L. S. Pontryagin, Topologische Gruppen I und II, Teubner Leipzig (German translation 1959, 1958 of the second Russian edition). MR 19:152e; MR 20:3925
  • 18. H. Schirmer, On fixed point sets of homeomorphisms of the $n$-ball, Israel J. Math. 7 (1969), 46-50. MR 39:7590
  • 19. -, Fixed point sets of homeomorphisms of compact surfaces, Israel J. Math. 10 (1971), 373-378. MR 45:7699
  • 20. -, Fixed point sets of continuous selfmaps, Fixed Point Theory Proc. (Sherbrooke, 1980), Lecture Notes in Math. 866 (1981), 417-428. MR 84h:54045
  • 21. A. van Heemert, Toplogische Gruppen und unzerlegbare Kontinua, Comp. Math. 5 (1938), 319-326.
  • 22. N. Vedenissoff, Remarks on the dimension of topological spaces (Russian), Moskov. Gos. Univ. U\v{c}. Zap. 30 (1939), 131-140. MR 2:69i
  • 23. L. E. Ward, Jr., Fixed point sets, Pacific J. Math. 47 (1973), 553-565. MR 51:4205

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22C05, 54H25, 22D35

Retrieve articles in all journals with MSC (1991): 22C05, 54H25, 22D35


Additional Information

Alex Chigogidze
Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada
Email: chigogid@math.usask.ca

Karl H. Hofmann
Affiliation: Fachbereich Mathematik, Technische Hochschule, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany
Email: hofmann@mathematik.th-darmstadt.de

John R. Martin
Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada
Email: math@sask.usask.ca

DOI: https://doi.org/10.1090/S0002-9947-97-02059-X
Keywords: Compact group, character group, flow, fixed point set
Received by editor(s): December 15, 1995
Additional Notes: The first named author was partially supported by an NSERC research grant.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society