Nonexistence and uniqueness

of positive solutions of Yamabe type equations

on nonpositively curved manifolds

Authors:
Bruno Bianchini and Marco Rigoli

Journal:
Trans. Amer. Math. Soc. **349** (1997), 4753-4774

MSC (1991):
Primary 53C21, 58G03

MathSciNet review:
1401514

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove nonexistence and uniqueness of positive -solutions of the elliptic equation , , on a nonpositively curved, complete manifold .

**[B]**Tilak Bhattacharya,*A nonexistence result for the 𝑛-Laplacian*, Pacific J. Math.**160**(1993), no. 1, 19–26. MR**1227500****[C-L]**Kuo-Shung Cheng and Jenn-Tsann Lin,*On the elliptic equations Δ𝑢=𝐾(𝑥)𝑢^{𝜎} and Δ𝑢=𝐾(𝑥)𝑒^{2𝑢}*, Trans. Amer. Math. Soc.**304**(1987), no. 2, 639–668. MR**911088**, 10.1090/S0002-9947-1987-0911088-1**[FC-S]**Doris Fischer-Colbrie and Richard Schoen,*The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature*, Comm. Pure Appl. Math.**33**(1980), no. 2, 199–211. MR**562550**, 10.1002/cpa.3160330206**[G-W]**R. E. Greene and H. Wu,*Function theory on manifolds which possess a pole*, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR**521983****[L]**Fang-Hua Lin,*On the elliptic equation 𝐷ᵢ[𝑎ᵢⱼ(𝑥)𝐷ⱼ𝑈]-𝑘(𝑥)𝑈+𝐾(𝑥)𝑈^{𝑝}=0*, Proc. Amer. Math. Soc.**95**(1985), no. 2, 219–226. MR**801327**, 10.1090/S0002-9939-1985-0801327-3**[K-W]**Jerry L. Kazdan and F. W. Warner,*Curvature functions for open 2-manifolds*, Ann. of Math. (2)**99**(1974), 203–219. MR**0343206****[N]**Wei Ming Ni,*On the elliptic equation Δ𝑢+𝐾(𝑥)𝑢^{(𝑛+2)/(𝑛-2)}=0, its generalizations, and applications in geometry*, Indiana Univ. Math. J.**31**(1982), no. 4, 493–529. MR**662915**, 10.1512/iumj.1982.31.31040**[Na]**Manabu Naito,*A note on bounded positive entire solutions of semilinear elliptic equations*, Hiroshima Math. J.**14**(1984), no. 1, 211–214. MR**750398****[P-W]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[RRS1]**Andrea Ratto, Marco Rigoli, and Alberto G. Setti,*On the Omori-Yau maximum principle and its applications to differential equations and geometry*, J. Funct. Anal.**134**(1995), no. 2, 486–510. MR**1363809**, 10.1006/jfan.1995.1154**[RRS2]**-,*A uniqueness result in PDE's and parallel mean curvature immersions in Euclidean space*, Complex Variables**30**(1996), 221-233. CMP**96:17****[RRV1]**Andrea Ratto, Marco Rigoli, and Laurent Véron,*Courbure scalaire et déformations conformes des variétés riemanniennes non compactes*, C. R. Acad. Sci. Paris Sér. I Math.**318**(1994), no. 7, 665–670 (French, with English and French summaries). MR**1272323****[RRV2]**Andrea Ratto, Marco Rigoli, and Laurent Véron,*Scalar curvature and conformal deformation of hyperbolic space*, J. Funct. Anal.**121**(1994), no. 1, 15–77. MR**1270588**, 10.1006/jfan.1994.1044

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
53C21,
58G03

Retrieve articles in all journals with MSC (1991): 53C21, 58G03

Additional Information

**Bruno Bianchini**

Affiliation:
B.B. e M.R. Dipartimento di Matematica, Universitá di Milano, Via Saldini, 50, 20133, Milano, Italy

**Marco Rigoli**

Affiliation:
B.B. e M.R. Dipartimento di Matematica, Universitá di Milano, Via Saldini, 50, 20133, Milano, Italy

Email:
rigoli@vmimat.mat.unimi.it

DOI:
https://doi.org/10.1090/S0002-9947-97-01810-2

Keywords:
Maximum principles,
elliptic differential inequalities,
Riemannian geometry

Received by editor(s):
March 6, 1995

Article copyright:
© Copyright 1997
American Mathematical Society