Nonexistence and uniqueness

of positive solutions of Yamabe type equations

on nonpositively curved manifolds

Authors:
Bruno Bianchini and Marco Rigoli

Journal:
Trans. Amer. Math. Soc. **349** (1997), 4753-4774

MSC (1991):
Primary 53C21, 58G03

DOI:
https://doi.org/10.1090/S0002-9947-97-01810-2

MathSciNet review:
1401514

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove nonexistence and uniqueness of positive -solutions of the elliptic equation , , on a nonpositively curved, complete manifold .

**[B]**T. Bhattacharya,*A nonexistence result for the n-Laplacian*, Pacific J . Math.**160**(1993), 19-26 MR**94f:35043****[C-L]**K. S. Cheng and J. T. Lin,*On the elliptic equations and*Trans. Amer. Math. Soc.**304**(1987), 639-668. MR**88j:35054****[FC-S]**D. Fischer-Colbrie and R. Schoen,*The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature*, Comm. Pure Appl. Math.**33**(1980), 199-211. MR**81i:53044****[G-W]**R. E. Greene and H.H. Wu,*Function theory on manifolds which possess a pole*, Lectures Notes in Math., vol. 699, Springer Verlag, New York, 1979. MR**81a:53002****[L]**F. H. Lin,*On the elliptic equation*, Proc. Amer. Math. Soc.**95**(1985), 219-226. MR**86k:35041****[K-W]**J. L. Kazdan and F. N. Warner,*Curvature functions for open 2-manifolds*, Ann. of Math.**99**(1974), 203-219. MR**49:7950****[N]**W. M. Ni,*On the elliptic equation , its generalizations and applications to geometry*, Indiana Univ. Math. J.**31**(1982), 493-539. MR**84e:35049****[Na]**M. Naito,*A note on bounded positive entire solutions of semilinear elliptic equations*, Hiroshima Math. J.**14**(1984), 211-214. MR**86d:35047****[P-W]**M. H. Protter and H. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, 1967. MR**36:2935****[RRS1]**A. Ratto, M. Rigoli, and A. Setti,*On the Omori-Yau maximum principle and its applications to differential equations and geometry*, J. Funct. Analysis**134**(1995), 486-510. MR**96k:53062****[RRS2]**-,*A uniqueness result in PDE's and parallel mean curvature immersions in Euclidean space*, Complex Variables**30**(1996), 221-233. CMP**96:17****[RRV1]**A. Ratto, M. Rigoli, L. Véron,*Scalar curvature and conformal deformations of noncompact Riemannian manifolds*, C.R. Acad. Sci. Paris Sér. I Math.**318**(1994), 665-670 and Math. Z. (to appear). MR**95a:53061****[RRV2]**-,*Scalar curvature and conformal deformations of hyperbolic space*, J. Funct. Analysis**121**(1994), 15-77. MR**95a:53062**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
53C21,
58G03

Retrieve articles in all journals with MSC (1991): 53C21, 58G03

Additional Information

**Bruno Bianchini**

Affiliation:
B.B. e M.R. Dipartimento di Matematica, Universitá di Milano, Via Saldini, 50, 20133, Milano, Italy

**Marco Rigoli**

Affiliation:
B.B. e M.R. Dipartimento di Matematica, Universitá di Milano, Via Saldini, 50, 20133, Milano, Italy

Email:
rigoli@vmimat.mat.unimi.it

DOI:
https://doi.org/10.1090/S0002-9947-97-01810-2

Keywords:
Maximum principles,
elliptic differential inequalities,
Riemannian geometry

Received by editor(s):
March 6, 1995

Article copyright:
© Copyright 1997
American Mathematical Society