Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rumely's local global principle
for algebraic P$\mathcal{S}$C fields over rings


Authors: Moshe Jarden and Aharon Razon
Journal: Trans. Amer. Math. Soc. 350 (1998), 55-85
MSC (1991): Primary 11R23
DOI: https://doi.org/10.1090/S0002-9947-98-01630-4
MathSciNet review: 1355075
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{S}$ be a finite set of rational primes. We denote the maximal Galois extension of $ \mathbb{Q}$ in which all $p\in \mathcal{S}$ totally decompose by $N$. We also denote the fixed field in $N$ of $e$ elements $ \sigma _{1},\ldots , \sigma _{e}$ in the absolute Galois group $G( \mathbb{Q})$ of $ \mathbb{Q}$ by $N( {\boldsymbol \sigma })$. We denote the ring of integers of a given algebraic extension $M$ of $ \mathbb{Q}$ by $ \mathbb{Z}_{M}$. We also denote the set of all valuations of $M$ (resp., which lie over $S$) by $ \mathcal{V}_{M}$ (resp., $ \mathcal{S}_{M}$). If $v\in \mathcal{V}_{M}$, then $O_{M,v}$ denotes the ring of integers of a Henselization of $M$ with respect to $v$. We prove that for almost all $ {\boldsymbol \sigma }\in G( \mathbb{Q})^{e}$, the field $M=N( {\boldsymbol \sigma })$ satisfies the following local global principle: Let $V$ be an affine absolutely irreducible variety defined over $M$. Suppose that $V(O_{M,v})\not =\varnothing $ for each $v\in \mathcal{V}_{M}\backslash \mathcal{S}_{M}$ and $V_{\mathrm{sim}}(O_{M,v})\not =\varnothing $ for each $v\in \mathcal{S}_{M}$. Then $V(O_{M})\not =\varnothing $. We also prove two approximation theorems for $M$.


References [Enhancements On Off] (What's this?)

  • [CaR] D.C. Cantor and P. Roquette, On diophantine equations over the ring of all algebraic integers, Journal of Number Theory 18 (1984), 1-16. MR 85j:11036
  • [De1] M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics, vol. 314, Springer, Berlin, 1973. MR 49:8790
  • [De2] M. Deuring, Reduktion algebraischer Funktionenkörper nach Primdivisoren des Konstantenkörpers, Mathematische Zeitschrift 47 (1942), 643-654. MR 7:362c
  • [DMR] M. Davis, Y. Matijasevi\v{c}, and J. Robinson, Hilbert's tenth problem. Diophantine equations: Positive aspects of a negative solution, Proceedings of Symposia in Pure Mathematics 28 (1976), 323-378. MR 55:5522
  • [FrJ] M.D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3), vol. 11, Springer, Heidelberg, 1986. MR 89b:12010
  • [GPR] B. Green, F. Pop, and P. Roquette, On Rumely's local-global principle, Jahresbericht der Deutsche Mathematickervereinigung 97 (1995), 43-74. CMP 95:15
  • [Har] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York, 1977. MR 57:3116
  • [HoP] W.V.D. Hodge and D. Pedoe, Methods of Algebraic Geometry II, Cambridge University Press, Cambridge, 1952. MR 13:972c
  • [Ja1] M. Jarden, Elementary statements over large algebraic fields, Transactions of AMS 164 (1972), 67-91. MR 46:1795
  • [Ja2] M. Jarden, The Skolem problem over the rings of integers of large algebraic fields, manuscript, Tel Aviv, 1989.
  • [Ja3] M. Jarden, Intersection of local algebraic extensions of a Hilbertian field (A. Barlotti et al., eds.), NATO ASI Series C 333, Kluwer, Dordrecht, 1991, pp. 343-405. MR 94c:12003
  • [Ja4] M. Jarden, The inverse Galois problem over formal power series fields, Israel Journal of Mathematics 85 (1994), 263-275. MR 95a:12009
  • [Ja5] M. Jarden, Algebraic realization of $p$-adically projective groups, Compositio Mathematica 79 (1991), 21-62. MR 93f:12007
  • [JaR] M. Jarden and Peter Roquette, The Nullstellensatz over p-adically closed fields, Journal of the Mathematical Society of Japan 32 (1980), 425-460. MR 82g:14027
  • [JR1] M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, Israel Journal of Mathematics 86 (1994), 25-59. MR 95c:12006
  • [JR2] M. Jarden and A. Razon, Skolem density problems over algebraic P$\mathcal{S}$C fields over rings, Nieuw Archief Wisskunde 13 (1995), 381-399. CMP 96:09
  • [Lan] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, MA, 1970. MR 44:181
  • [MB1] L. Moret-Bailly, Points entiers des varietés arithmétiques, Séminaire de Théorie des Nombres, Paris 1985-86, Progress in Mathematics 71, Birkhäuser, Boston, 1987, pp. 147-153. MR 91f:14020
  • [MB2] L. Moret-Bailly, Groupes de Picard et problémes de Skolem I, Annales Scientifiques de l'Ecole Normale Superieure (4) 22 (1989), 161-179. MR 90i:11065
  • [MB3] L. Moret-Bailly, Groupes de Picard et problémes de Skolem II, Annales Scientifiques de l'Ecole Normale Superieure (4) 22 (1989), 181-194. MR 90i:11065
  • [Mum] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics 1358, Springer, Berlin, 1988. MR 89k:14001
  • [Pop] F. Pop, Fields of totally $\Sigma $-adic numbers, manuscript, Heidelberg, 1992.
  • [Raz] A. Razon, Primitive recursive decidability for large rings of algebraic integers, Ph.D Thesis, Tel Aviv, 1995.
  • [Ro1] P. Roquette, Reciprocity in valued function fields, Journal für die Reine und Angewandte Mathematik 375/376 (1987), 238-258. MR 88f:11058
  • [Ro2] P. Roquette, Rumely's local global principle, Notes from a meeting in Oberwolfach on model theory, 1990.
  • [Rob] A. Robinson, Complete Theories, North Holland, 1956. MR 17:817b
  • [Ru1] R. Rumely, Arithmetic over the ring of all algebraic integers, Journal für die Reine und Angewandte Mathematik 368 (1986), 127-133. MR 87i:11041
  • [Ru2] R. Rumely, Capacity Theory on Algebraic Curves, Lecture Notes in Mathematics, vol.
    1378, Springer, Berlin, 1989. MR 91b:14018
  • [Sha] I.R. Shafarevich, Basic Algebraic Geometry, Grundlehren der mathematischen Wissenschaften 213, Springer, Berlin, 1977. MR 56:5538
  • [Wei] V. Weispfenning, Quantifier elimination and decision procedures for valued fields, Models and Sets, Lecture Notes in Mathematics 1103, Berlin, 1984, pp. 419-472. MR 86m:03059

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11R23

Retrieve articles in all journals with MSC (1991): 11R23


Additional Information

Moshe Jarden
Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
Email: jarden@math.tau.ac.il

Aharon Razon
Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
Email: razon@math.tau.ac.il

DOI: https://doi.org/10.1090/S0002-9947-98-01630-4
Keywords: PAC field over rings, P$\mathcal{S}$C fields over rings, local global principle, global fields, absolute Galois group, Haar measure, valuations, Henselian fields, field of totally $\mathcal{S}$-adic numbers
Received by editor(s): June 14, 1994
Received by editor(s) in revised form: August 1, 1995
Additional Notes: This research was supported by The Israel Science Foundation administered by The Israel Academy of Sciences and Humanities.
The authors thank Joachim Schmid for useful remarks.
Dedicated: To Peter Roquette with gratitude
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society