Widths of Subgroups

Authors:
Rita Gitik, Mahan Mitra, Eliyahu Rips and Michah Sageev

Journal:
Trans. Amer. Math. Soc. **350** (1998), 321-329

MSC (1991):
Primary 20F32, 57M07

DOI:
https://doi.org/10.1090/S0002-9947-98-01792-9

MathSciNet review:
1389776

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We say that the width of an infinite subgroup in is if there exists a collection of essentially distinct conjugates of such that the intersection of any two elements of the collection is infinite and is maximal possible. We define the width of a finite subgroup to be . We prove that a quasiconvex subgroup of a negatively curved group has finite width. It follows that geometrically finite surfaces in closed hyperbolic -manifolds satisfy the -plane property for some .

**[C-D-P]**M. Coornaert, T. Delzant and A. Papadopoulos,*Géométrie et théorie des groupes*, Lecture Notes in Math., vol.1441, Springer Verlag, 1990. MR**92f:57003****[G-H]**E. Ghys and P. de la Harpe (editors),*Sur les groupes hyperboliques d'après Mikhael Gromov*, Progress in Math. vol 83, Birkhauser, Boston, Ma., 1990. MR**92f:53050****[G-R]**R. Gitik and E. Rips,*Heights of Subgroups*, MSRI Preprint**027-95**.**[Gr 1]**M. Gromov,*Hyperbolic Groups*, Essays in Group Theory, MSRI series vol.8 (S. M. Gersten, ed.), Springer-Verlag, 1987, pp. 75-263. MR**89e:20070****[Gr 2]**-,*Asymptotic Invariants of Infinite Groups*, Geometric Group Theory, vol.2; LMS Lecture Notes 182, Cambridge University Press, 1993. MR**95m:20041****[H-S]**J. Hass and P. Scott,*Homotopy Equivalence and Homeomorphism of -Manifolds*, Topology**31**(1992), 493-517. MR**94g:57021****[K-S]**I. Kapovich and H. Short,*Some Remarks on Quasiconvexity*, preprint.**[Mi]**M. Mitra,*Immersed Incompressible Surfaces in Hyperbolic -Manifolds*, in preparation.**[R-S]**H. Rubinstein and M. Sageev,*Intersection Patterns of Immersed Incompressible Surfaces*, in preparation.**[Scott]**P. Scott,*There Are No Fake Seifert Fibre Spaces with Infinite*, Annals of Math**117**(1983), 35-70. MR**84c:57008****[Sh]**H. B. Short,*Quasiconvexity and a Theorem of Howson's*, Group Theory from a Geometric Viewpoint, Proc. ICTP. Trieste, World Scientific, Singapore, 1991, pp. 168-176. MR**93d:20071****[Su-Sw]**P. Susskind and G. A. Swarup,*Limit Sets of Geometrically Finite Hyperbolic Groups*, Amer. J. Math**114**(1992), 233-250. MR**94d:57066****[Swe]**E. Swenson,*Limit Sets in the Boundary of Negatively Curved Groups*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
20F32,
57M07

Retrieve articles in all journals with MSC (1991): 20F32, 57M07

Additional Information

**Rita Gitik**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
ritagtk@math.lsa.umich.edu

**Mahan Mitra**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720

Email:
mitra@math.berkeley.edu

**Eliyahu Rips**

Affiliation:
Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem, 91904, Israel

Email:
rips@sunset.huji.ac.il

**Michah Sageev**

Affiliation:
Department of Mathematics, University of Southampton, Southampton, England

Email:
mes@maths.soton.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-98-01792-9

Received by editor(s):
September 19, 1995

Received by editor(s) in revised form:
March 25, 1996

Additional Notes:
Research of the first author supported in part by NSF grant DMS 9022140.

Article copyright:
© Copyright 1998
American Mathematical Society