Double Walsh series with coefficients

of bounded variation of higher order

Authors:
Chang-Pao Chen and Ching-Tang Wu

Journal:
Trans. Amer. Math. Soc. **350** (1998), 395-417

MSC (1991):
Primary 42C10

MathSciNet review:
1407697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the Cesàro sums of order of the Walsh functions. The estimates of given by Fine back in 1949 are extended to the case . As a corollary, the following properties are established for the rectangular partial sums of those double Walsh series whose coefficients satisfy conditions of bounded variation of order , and for some : (a) regular convergence; (b) uniform convergence; (c) -integrability and -metric convergence for ; and (d) Parseval's formula. Extensions to those with coefficients of generalized bounded variation are also derived.

**[B]**L. A. Balašov,*Series with respect to the Walsh system with monotone coefficients.*, Sibirsk. Mat. Z.**12**(1971), 25–39 (Russian). MR**0284758****[C1]**Chang P’ao Ch’ên,*Pointwise convergence of trigonometric series*, J. Austral. Math. Soc. Ser. A**43**(1987), no. 3, 291–300. MR**904390****[C2]**Chang P’ao Ch’ên,*Integrability and 𝐿-convergence of multiple trigonometric series*, Bull. Austral. Math. Soc.**49**(1994), no. 2, 333–339. MR**1265369**, 10.1017/S0004972700016397**[C3]**Chang P’ao Ch’ên,*Weighted integrability and 𝐿¹-convergence of multiple trigonometric series*, Studia Math.**108**(1994), no. 2, 177–190. MR**1259503****[C4]**-,*Integrability of multiple Walsh series and Parseval's formula*, Analysis Math.**22**(1996), 99-112. CMP**1996#16****[C5]**-,*Integrability, mean convergence, and Parseval's formula for double Walsh series*, preprint.**[CH]**Chang P’ao Ch’ên and Po Hsun Hsieh,*Pointwise convergence of double trigonometric series*, J. Math. Anal. Appl.**172**(1993), no. 2, 582–601. With a note by Ferenc Móricz. MR**1201007**, 10.1006/jmaa.1993.1045**[CMW]**Chang P’ao Ch’ên, Hui Chuan Wu, and Ferenc Móricz,*Pointwise convergence of multiple trigonometric series*, J. Math. Anal. Appl.**185**(1994), no. 3, 629–646. MR**1288232**, 10.1006/jmaa.1994.1273**[F]**N. J. Fine,*On the Walsh functions*, Trans. Amer. Math. Soc.**65**(1949), 372–414. MR**0032833**, 10.1090/S0002-9947-1949-0032833-2**[H]**G. H. Hardy,*On the convergence of certain multiple series*, Proc. Cambridge Phil. Soc.**19**(1916-1919), 86-95.**[M]**George W. Morgenthaler,*On Walsh-Fourier series*, Trans. Amer. Math. Soc.**84**(1957), 472–507. MR**0091370**, 10.1090/S0002-9947-1957-0091370-4**[M1]**F. Móricz,*Walsh-Fourier series with coefficients of generalized bounded variation*, J. Austral. Math. Soc. Ser. A**47**(1989), no. 3, 458–465. MR**1018974****[M2]**F. Móricz,*Double Walsh series with coefficients of bounded variation*, Z. Anal. Anwendungen**10**(1991), no. 1, 3–10 (English, with German and Russian summaries). MR**1155351****[M3]**Ferenc Móricz,*Pointwise convergence of double Walsh series*, Analysis**12**(1992), no. 1-2, 121–137. MR**1159374****[MS1]**Ferenc Móricz and Ferenc Schipp,*On the integrability and 𝐿¹-convergence of Walsh series with coefficients of bounded variation*, J. Math. Anal. Appl.**146**(1990), no. 1, 99–109. MR**1041204**, 10.1016/0022-247X(90)90335-D**[MS2]**F. Móricz and F. Schipp,*On the integrability and 𝐿¹-convergence of double Walsh series*, Acta Math. Hungar.**57**(1991), no. 3-4, 371–380. MR**1139331**, 10.1007/BF01903688**[MSW1]**F. Móricz, F. Schipp, and W. R. Wade,*On the integrability of double Walsh series with special coefficients*, Michigan Math. J.**37**(1990), no. 2, 191–201. MR**1058391**, 10.1307/mmj/1029004125**[MSW2]**F. Móricz, F. Schipp, and W. R. Wade,*Cesàro summability of double Walsh-Fourier series*, Trans. Amer. Math. Soc.**329**(1992), no. 1, 131–140. MR**1030510**, 10.1090/S0002-9947-1992-1030510-8**[R]**A. I. Rubinšteĭn,*The 𝐴-integral and series with respect to a Walsh system*, Uspehi Mat. Nauk**18**(1963), no. 3 (111), 191–197 (Russian). MR**0154058****[S]**A. A. Šneĭder,*On series of Walsh functions with monotonic coefficients*, Izvestiya Akad. Nauk SSSR. Ser. Mat.**12**(1948), 179–192 (Russian). MR**0025605****[SSW]**F. Schipp, W. R. Wade, and P. Simon,*Walsh series*, Adam Hilger, Ltd., Bristol, 1990. An introduction to dyadic harmonic analysis; With the collaboration of J. Pál. MR**1117682****[W1]**F. Weisz,*Cesàro summability of two-parameter Walsh-Fourier series*, J. Approx. Theory**88**(1997), 168-192. CMP**1997#7****[W2]**Ferenc Weisz,*Cesàro summability of two-dimensional Walsh-Fourier series*, Trans. Amer. Math. Soc.**348**(1996), no. 6, 2169–2181. MR**1340180**, 10.1090/S0002-9947-96-01569-3**[Y]**Shigeki Yano,*On Walsh-Fourier series*, Tôhoku Math. J. (2)**3**(1951), 223–242. MR**0045236****[Z]**A. Zygmund,*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
42C10

Retrieve articles in all journals with MSC (1991): 42C10

Additional Information

**Chang-Pao Chen**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

Email:
cpchen@math.nthu.edu.tw

**Ching-Tang Wu**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

DOI:
https://doi.org/10.1090/S0002-9947-98-01899-6

Received by editor(s):
May 17, 1995

Received by editor(s) in revised form:
July 30, 1996

Additional Notes:
The first author’s research is supported by National Science Council, Taipei, R.O.C. under Grant #NSC 84-2121-M-007-026.

Article copyright:
© Copyright 1998
American Mathematical Society