Filling by holomorphic curves in

symplectic 4-manifolds

Author:
Rugang Ye

Journal:
Trans. Amer. Math. Soc. **350** (1998), 213-250

MSC (1991):
Primary 53C15; Secondary 32C25

MathSciNet review:
1422913

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a general framework for embedded (immersed) -holomorphic curves and a systematic treatment of the theory of filling by holomorphic curves in 4-dimensional symplectic manifolds. In particular, a deformation theory and an intersection theory for -holomorphic curves with boundary are developed. Bishop's local filling theorem is extended to almost complex manifolds. Existence and uniqueness of global fillings are given complete proofs. Then they are extended to the situation with nontrivial -holomorphic spheres, culminating in the construction of singular fillings.

**[A]**Michèle Audin and Jacques Lafontaine (eds.),*Holomorphic curves in symplectic geometry*, Progress in Mathematics, vol. 117, Birkhäuser Verlag, Basel, 1994. MR**1274923****[AA]**William K. Allard and Frederick J. Almgren Jr.,*On the radial behavior of minimal surfaces and the uniqueness of their tangent cones*, Ann. of Math. (2)**113**(1981), no. 2, 215–265. MR**607893**, 10.2307/2006984**[B]**Errett Bishop,*Differentiable manifolds in complex Euclidean space*, Duke Math. J.**32**(1965), 1–21. MR**0200476****[BG]**Eric Bedford and Bernard Gaveau,*Envelopes of holomorphy of certain 2-spheres in 𝐶²*, Amer. J. Math.**105**(1983), no. 4, 975–1009. MR**708370**, 10.2307/2374301**[BK]**Eric Bedford and Wilhelm Klingenberg,*On the envelope of holomorphy of a 2-sphere in 𝐶²*, J. Amer. Math. Soc.**4**(1991), no. 3, 623–646. MR**1094437**, 10.1090/S0894-0347-1991-1094437-0**[E1]**Yakov Eliashberg,*Filling by holomorphic discs and its applications*, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45–67. MR**1171908****[E2]**Y. Eliashberg,*Topology of 2-knots in 𝑅⁴ and symplectic geometry*, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 335–353. MR**1362834****[F]**Andreas Floer,*The unregularized gradient flow of the symplectic action*, Comm. Pure Appl. Math.**41**(1988), no. 6, 775–813. MR**948771**, 10.1002/cpa.3160410603**[G]**M. Gromov,*Pseudoholomorphic curves in symplectic manifolds*, Invent. Math.**82**(1985), no. 2, 307–347. MR**809718**, 10.1007/BF01388806**[H]**H. Hofer,*Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three*, Invent. Math.**114**(1993), no. 3, 515–563. MR**1244912**, 10.1007/BF01232679**[M1]**Dusa McDuff,*The local behaviour of holomorphic curves in almost complex 4-manifolds*, J. Differential Geom.**34**(1991), no. 1, 143–164. MR**1114456****[M2]**Dusa McDuff,*Singularities of 𝐽-holomorphic curves in almost complex 4-manifolds*, J. Geom. Anal.**2**(1992), no. 3, 249–266. MR**1164604**, 10.1007/BF02921295**[M3]**Dusa McDuff,*The structure of rational and ruled symplectic 4-manifolds*, J. Amer. Math. Soc.**3**(1990), no. 3, 679–712. MR**1049697**, 10.1090/S0894-0347-1990-1049697-8

Dusa McDuff,*Erratum to: “The structure of rational and ruled symplectic 4-manifolds” [J. Amer. Math. Soc. 3 (1990), no. 3, 679–712; MR1049697 (91k:58042)]*, J. Amer. Math. Soc.**5**(1992), no. 4, 987–988. MR**1168961**, 10.1090/S0894-0347-1992-1168961-7**[M4]**Dusa McDuff,*Examples of symplectic structures*, Invent. Math.**89**(1987), no. 1, 13–36. MR**892186**, 10.1007/BF01404672**[M5]**Michèle Audin and Jacques Lafontaine (eds.),*Holomorphic curves in symplectic geometry*, Progress in Mathematics, vol. 117, Birkhäuser Verlag, Basel, 1994. MR**1274923****[MS]**D. McDuff and D. Salamon,*Symplectic Geometry,*Lecture Notes, Cambridge, 1993.**[MT]**Dusa McDuff and Lisa Traynor,*The 4-dimensional symplectic camel and related results*, Symplectic geometry, London Math. Soc. Lecture Note Ser., vol. 192, Cambridge Univ. Press, Cambridge, 1993, pp. 169–182. MR**1297135****[MW]**Mario J. Micallef and Brian White,*The structure of branch points in minimal surfaces and in pseudoholomorphic curves*, Ann. of Math. (2)**141**(1995), no. 1, 35–85. MR**1314031**, 10.2307/2118627**[SU]**J. Sacks and K. Uhlenbeck,*The existence of minimal immersions of 2-spheres*, Ann. of Math. (2)**113**(1981), no. 1, 1–24. MR**604040**, 10.2307/1971131**[S1]**Leon Simon,*Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems*, Ann. of Math. (2)**118**(1983), no. 3, 525–571. MR**727703**, 10.2307/2006981**[S2]**Leon Simon,*Cylindrical tangent cones and the singular set of minimal submanifolds*, J. Differential Geom.**38**(1993), no. 3, 585–652. MR**1243788****[S3]**L. Simon,*On the singularities of harmonic maps*, preprint.**[V]**I. N. Vekua,*Generalized analytic functions*, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR**0150320****[Y1]**Rugang Ye,*Gromov’s compactness theorem for pseudo holomorphic curves*, Trans. Amer. Math. Soc.**342**(1994), no. 2, 671–694. MR**1176088**, 10.1090/S0002-9947-1994-1176088-1**[Y2]**R. Ye,*Filling by holomorphic disks in symplectic 4-manifolds,*preprint, Centre de Mathématiques et de Leurs Applications, ENS Cachan, 1994.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
53C15,
32C25

Retrieve articles in all journals with MSC (1991): 53C15, 32C25

Additional Information

**Rugang Ye**

Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106

Email:
yer@math.ucsb.edu

DOI:
https://doi.org/10.1090/S0002-9947-98-01970-9

Received by editor(s):
January 24, 1996

Additional Notes:
Partially supported by NSF

Article copyright:
© Copyright 1998
American Mathematical Society