Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On differential equations for Sobolev-type Laguerre polynomials


Authors: J. Koekoek, R. Koekoek and H. Bavinck
Journal: Trans. Amer. Math. Soc. 350 (1998), 347-393
MSC (1991): Primary 33C45; Secondary 34A35
DOI: https://doi.org/10.1090/S0002-9947-98-01993-X
MathSciNet review: 1433121
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Sobolev-type Laguerre polynomials $\{L_n^{\alpha,M,N}(x)\}_{n=0}^{\infty}$ are orthogonal with respect to the inner product

\begin{displaymath}\langle f,g\rangle\;=\frac{1}{\Gamma(\alpha+1)}\int _0^{\infty}x^{\alpha}e^{-x}f(x)g(x)dx+Mf(0)g(0)+ Nf'(0)g'(0),\end{displaymath}

where $\alpha>-1$, $M\ge 0$ and $N\ge 0$. In 1990 the first and second author showed that in the case $M>0$ and $N=0$ the polynomials are eigenfunctions of a unique differential operator of the form

\begin{displaymath}M\sum _{i=1}^{\infty}a_i(x)D^i+xD^2+(\alpha+1-x)D,\end{displaymath}

where $\left\{a_i(x)\right\}_{i=1}^{\infty}$ are independent of $n$. This differential operator is of order $2\alpha+4$ if $\alpha$ is a nonnegative integer, and of infinite order otherwise. In this paper we construct all differential equations of the form

\begin{align}&M\sum _{i=0}^{\infty}a_i(x)y^{(i)}(x)+ N\sum _{i=0}^{\infty}b_i(x)y^{(i)}(x)\nonumber \\ &\hspace{1cm}{}+MN\sum _{i=0}^{\infty}c_i(x)y^{(i)}(x)+ xy''(x)+(\alpha +1-x)y'(x)+ny(x)=0,\nonumber \end{align}

where the coefficients $\left\{a_i(x)\right\}_{i=1}^{\infty}$, $\left\{b_i(x)\right\}_{i=1}^{\infty}$ and $\left\{c_i(x)\right\}_{i=1}^{\infty}$ are independent of $n$ and the coefficients $a_0(x)$, $b_0(x)$ and $c_0(x)$ are independent of $x$, satisfied by the Sobolev-type Laguerre polynomials $\{L_n^{\alpha,M,N}(x)\}_{n=0}^{\infty}$. Further, we show that in the case $M=0$ and $N>0$ the polynomials are eigenfunctions of a linear differential operator, which is of order $2\alpha+8$ if $\alpha$ is a nonnegative integer and of infinite order otherwise. Finally, we show that in the case $M>0$ and $N>0$ the polynomials are eigenfunctions of a linear differential operator, which is of order $4\alpha+10$ if $\alpha$ is a nonnegative integer and of infinite order otherwise.


References [Enhancements On Off] (What's this?)

  • 1. H. Bavinck : A direct approach to Koekoek's differential equation for generalized Laguerre polynomials. Acta Mathematica Hungarica 66, 1995, 247-253. MR 96a:33009
  • 2. H. Bavinck : A difference operator of infinite order with Sobolev-type Charlier polynomials as eigenfunctions. Indagationes Mathematicae, (N.S.) 7 (3), 1996, 281-291.
  • 3. H. Bavinck & H. van Haeringen : Difference equations for generalized Meixner polynomials. Journal of Mathematical Analysis and Applications 184, 1994, 453-463. MR 95h:33004
  • 4. H. Bavinck & R. Koekoek : On a difference equation for generalizations of Charlier polynomials. Journal of Approximation Theory 81, 1995, 195-206. MR 96h:33002
  • 5. W.N. Everitt, L.L. Littlejohn & R. Wellman : The symmetric form of the Koekoeks' Laguerre type differential equation. Journal of Computational and Applied Mathematics 57, 1995, 115-121. MR 96j:34148
  • 6. I.H. Jung, K.H. Kwon, D.W. Lee & L.L. Littlejohn : Sobolev orthogonal polynomials and spectral differential equations. Transactions of the American Mathematical Society 347, 1995, 3629-3643. CMP 95:14
  • 7. I.H. Jung, K.H. Kwon, D.W. Lee & L.L. Littlejohn : Differential equations and Sobolev orthogonality. Journal of Computational and Applied Mathematics 65, 1995, 173-180. MR 97a:33019
  • 8. J. Koekoek & R. Koekoek : On a differential equation for Koornwinder's generalized Laguerre polynomials. Proceedings of the American Mathematical Society 112, 1991, 1045-1054. MR 91j:33008
  • 9. R. Koekoek : Generalizations of the classical Laguerre polynomials and some q-analogues. Delft University of Technology, Thesis, 1990.
  • 10. R. Koekoek : The search for differential equations for orthogonal polynomials by using computers. Delft University of Technology, report no. 91-55, 1991.
  • 11. R. Koekoek : The search for differential equations for certain sets of orthogonal polynomials. Journal of Computational and Applied Mathematics 49, 1993, 111-119. MR 95m:33008
  • 12. R. Koekoek & H.G. Meijer : A generalization of Laguerre polynomials. SIAM Journal on Mathematical Analysis 24, 1993, 768-782. MR 94b:33007
  • 13. T.H. Koornwinder : Orthogonal polynomials with weight function $(1-x)^{\alpha }(1+x)^{\beta }\break +M\delta(x+1)+N\delta(x-1)$. Canadian Mathematical Bulletin 27(2), 1984, 205-214. MR 85i:33011
  • 14. A.M. Krall : Orthogonal polynomials satisfying fourth order differential equations. Proceedings of the Royal Society of Edinburgh Sect. A 87, 1981, 271-288. MR 82d:33021
  • 15. H.L. Krall : Certain differential equations for Tchebycheff polynomials. Duke Mathematical Journal 4, 1938, 705-718.
  • 16. H.L. Krall : On orthogonal polynomials satisfying a certain fourth order differential equation. The Pennsylvania State College Studies, No. 6, 1940. MR 2:98a
  • 17. H.L. Krall & I.M. Sheffer : Differential equations of infinite order for orthogonal polynomials. Annali di Matematica Pura ed Applicata (4) 74, 1966, 135-172. MR 34:6260
  • 18. Y.L. Luke : The Special Functions and Their Approximations II. Academic Press, New York, 1969. MR 40:2909
  • 19. C.S. Meijer : Expansion theorems for the $G$-function I. Indagationes Mathematicae 14, 1952, 369-379. MR 14:469e

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 33C45, 34A35

Retrieve articles in all journals with MSC (1991): 33C45, 34A35


Additional Information

J. Koekoek
Affiliation: Delft University of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, 2600GA Delft, The Netherlands

R. Koekoek
Affiliation: Delft University of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, 2600GA Delft, The Netherlands
Email: r.koekoek@twi.tudelft.nl

H. Bavinck
Affiliation: Delft University of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, 2600GA Delft, The Netherlands
Email: h.bavinck@twi.tudelft.nl

DOI: https://doi.org/10.1090/S0002-9947-98-01993-X
Keywords: Differential equations, Sobolev-type Laguerre polynomials
Received by editor(s): August 28, 1995
Received by editor(s) in revised form: June 24, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society