On differential equations for Sobolev-type Laguerre polynomials

Authors:
J. Koekoek, R. Koekoek and H. Bavinck

Journal:
Trans. Amer. Math. Soc. **350** (1998), 347-393

MSC (1991):
Primary 33C45; Secondary 34A35

MathSciNet review:
1433121

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Sobolev-type Laguerre polynomials are orthogonal with respect to the inner product

where , and . In 1990 the first and second author showed that in the case and the polynomials are eigenfunctions of a unique differential operator of the form

where are independent of . This differential operator is of order if is a nonnegative integer, and of infinite order otherwise. In this paper we construct all differential equations of the form

where the coefficients , and are independent of and the coefficients , and are independent of , satisfied by the Sobolev-type Laguerre polynomials . Further, we show that in the case and the polynomials are eigenfunctions of a linear differential operator, which is of order if is a nonnegative integer and of infinite order otherwise. Finally, we show that in the case and the polynomials are eigenfunctions of a linear differential operator, which is of order if is a nonnegative integer and of infinite order otherwise.

**1.**H. Bavinck,*A direct approach to Koekoek’s differential equation for generalized Laguerre polynomials*, Acta Math. Hungar.**66**(1995), no. 3, 247–253. MR**1314004**, 10.1007/BF01874288**2.**H. Bavinck :*A difference operator of infinite order with Sobolev-type Charlier polynomials as eigenfunctions.*Indagationes Mathematicae, (N.S.)**7**(3), 1996, 281-291.**3.**Herman Bavinck and Henk van Haeringen,*Difference equations for generalized Meixner polynomials*, J. Math. Anal. Appl.**184**(1994), no. 3, 453–463. MR**1281521**, 10.1006/jmaa.1994.1214**4.**Herman Bavinck and Roelof Koekoek,*On a difference equation for generalizations of Charlier polynomials*, J. Approx. Theory**81**(1995), no. 2, 195–206. MR**1327166**, 10.1006/jath.1995.1044**5.**W. N. Everitt, L. L. Littlejohn, and R. Wellman,*The symmetric form of the Koekoeks’ Laguerre type differential equation*, Proceedings of the Fourth International Symposium on Orthogonal Polynomials and their Applications (Evian-Les-Bains, 1992), 1995, pp. 115–121. MR**1340929**, 10.1016/0377-0427(93)E0238-H**6.**I.H. Jung, K.H. Kwon, D.W. Lee & L.L. Littlejohn :*Sobolev orthogonal polynomials and spectral differential equations.*Transactions of the American Mathematical Society**347**, 1995, 3629-3643. CMP**95:14****7.**I. H. Jung, K. H. Kwon, D. W. Lee, and L. L. Littlejohn,*Differential equations and Sobolev orthogonality*, Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994), 1995, pp. 173–180. MR**1379129**, 10.1016/0377-0427(95)00111-5**8.**J. Koekoek and R. Koekoek,*On a differential equation for Koornwinder’s generalized Laguerre polynomials*, Proc. Amer. Math. Soc.**112**(1991), no. 4, 1045–1054. MR**1047003**, 10.1090/S0002-9939-1991-1047003-9**9.**R. Koekoek :*Generalizations of the classical Laguerre polynomials and some q-analogues.*Delft University of Technology, Thesis, 1990.**10.**R. Koekoek :*The search for differential equations for orthogonal polynomials by using computers.*Delft University of Technology, report no.**91-55**, 1991.**11.**Roelof Koekoek,*The search for differential equations for certain sets of orthogonal polynomials*, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), 1993, pp. 111–119. MR**1256017**, 10.1016/0377-0427(93)90141-W**12.**R. Koekoek and H. G. Meijer,*A generalization of Laguerre polynomials*, SIAM J. Math. Anal.**24**(1993), no. 3, 768–782. MR**1215437**, 10.1137/0524047**13.**Tom H. Koornwinder,*Orthogonal polynomials with weight function (1-𝑥)^{𝛼}(1+𝑥)^{𝛽}+𝑀𝛿(𝑥+1)+𝑁𝛿(𝑥-1)*, Canad. Math. Bull.**27**(1984), no. 2, 205–214. MR**740416**, 10.4153/CMB-1984-030-7**14.**Allan M. Krall,*Orthogonal polynomials satisfying fourth order differential equations*, Proc. Roy. Soc. Edinburgh Sect. A**87**(1980/81), no. 3-4, 271–288. MR**606336**, 10.1017/S0308210500015213**15.**H.L. Krall :*Certain differential equations for Tchebycheff polynomials.*Duke Mathematical Journal**4**, 1938, 705-718.**16.**H. L. Krall,*On orthogonal polynomials satisfying a certain fourth order differential equation*, Pennsylvania State College Studies,**1940**(1940), no. 6, 24. MR**0002679****17.**H. L. Krall and I. M. Sheffer,*Differential equations of infinite order for orthogonal polynomials*, Ann. Mat. Pura Appl. (4)**74**(1966), 135–172. MR**0206441****18.**Yudell L. Luke,*The special functions and their approximations. Vol. II*, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. MR**0249668****19.**C. S. Meijer,*Expansion theorems for the 𝐺-function. I*, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math.**14**(1952), 369–379. MR**0051373**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
33C45,
34A35

Retrieve articles in all journals with MSC (1991): 33C45, 34A35

Additional Information

**J. Koekoek**

Affiliation:
Delft University of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, 2600GA Delft, The Netherlands

**R. Koekoek**

Affiliation:
Delft University of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, 2600GA Delft, The Netherlands

Email:
r.koekoek@twi.tudelft.nl

**H. Bavinck**

Affiliation:
Delft University of Technology, Faculty of Technical Mathematics and Informatics, P.O. Box 5031, 2600GA Delft, The Netherlands

Email:
h.bavinck@twi.tudelft.nl

DOI:
http://dx.doi.org/10.1090/S0002-9947-98-01993-X

Keywords:
Differential equations,
Sobolev-type Laguerre polynomials

Received by editor(s):
August 28, 1995

Received by editor(s) in revised form:
June 24, 1996

Article copyright:
© Copyright 1998
American Mathematical Society