New subfactors from braid group representations
Author:
Juliana Erlijman
Journal:
Trans. Amer. Math. Soc. 350 (1998), 185211
MSC (1991):
Primary 46L37
MathSciNet review:
1443192
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper is about the construction of new examples of pairs of subfactors of the hyperfinite II factor, and the computation of their indices and relative commutants. The construction is done in general by considering unitary braid representations with certain properties that are satisfied in natural examples. We compute the indices explicitly for the particular cases in which the braid representations are obtained in connection with representation theory of Lie algebras of types A,B,C,D.
 [Bi]
Joan
S. Birman, Braids, links, and mapping class groups, Princeton
University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974.
Annals of Mathematics Studies, No. 82. MR 0375281
(51 #11477)
 [BW]
Joan
S. Birman and Hans
Wenzl, Braids, link polynomials and a new
algebra, Trans. Amer. Math. Soc.
313 (1989), no. 1,
249–273. MR
992598 (90g:57004), http://dx.doi.org/10.1090/S0002994719890992598X
 [Ch]
Marie
Choda, Index for factors generated by Jones’ two sided
sequence of projections, Pacific J. Math. 139 (1989),
no. 1, 1–16. MR 1010781
(91h:46107)
 [D]
V.
G. Drinfel′d, Quantum groups, Proceedings of the
International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif.,
1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
(89f:17017)
 [FH]
William
Fulton and Joe
Harris, Representation theory, Graduate Texts in Mathematics,
vol. 129, SpringerVerlag, New York, 1991. A first course; Readings in
Mathematics. MR
1153249 (93a:20069)
 [GHJ]
Frederick
M. Goodman, Pierre
de la Harpe, and Vaughan
F. R. Jones, Coxeter graphs and towers of algebras,
Mathematical Sciences Research Institute Publications, vol. 14,
SpringerVerlag, New York, 1989. MR 999799
(91c:46082)
 [GW]
Frederick
M. Goodman and Hans
Wenzl, LittlewoodRichardson coefficients for Hecke algebras at
roots of unity, Adv. Math. 82 (1990), no. 2,
244–265. MR 1063959
(91i:20013), http://dx.doi.org/10.1016/00018708(90)90090A
 [Hu]
James
E. Humphreys, Introduction to Lie algebras and representation
theory, SpringerVerlag, New YorkBerlin, 1972. Graduate Texts in
Mathematics, Vol. 9. MR 0323842
(48 #2197)
 [J]
V.
F. R. Jones, Index for subfactors, Invent. Math.
72 (1983), no. 1, 1–25. MR 696688
(84d:46097), http://dx.doi.org/10.1007/BF01389127
 [Ji]
Michio
Jimbo, Quantum 𝑅 matrix for the generalized Toda
system, Comm. Math. Phys. 102 (1986), no. 4,
537–547. MR
824090 (87h:58086)
 [M]
Jun
Murakami, The Kauffman polynomial of links and representation
theory, Osaka J. Math. 24 (1987), no. 4,
745–758. MR
927059 (89c:57007)
 [Mi]
Willard
Miller Jr., Symmetry groups and their applications, Academic
Press, New YorkLondon, 1972. Pure and Applied Mathematics, Vol. 50. MR 0338286
(49 #3052)
 [O]
Adrian
Ocneanu, Chirality for operator algebras, Subfactors (Kyuzeso,
1993) World Sci. Publ., River Edge, NJ, 1994, pp. 39–63. MR 1317353
(96e:46082)
 [Po1]
Sorin
Popa, Orthogonal pairs of ∗subalgebras in finite von
Neumann algebras, J. Operator Theory 9 (1983),
no. 2, 253–268. MR 703810
(84h:46077)
 [Po2]
S.
Popa, Classification of subfactors: the reduction to commuting
squares, Invent. Math. 101 (1990), no. 1,
19–43. MR
1055708 (91h:46109), http://dx.doi.org/10.1007/BF01231494
 [W1]
Hans
Wenzl, Hecke algebras of type 𝐴_{𝑛} and
subfactors, Invent. Math. 92 (1988), no. 2,
349–383. MR
936086 (90b:46118), http://dx.doi.org/10.1007/BF01404457
 [W2]
Hans
Wenzl, Quantum groups and subfactors of type 𝐵, 𝐶,
and 𝐷, Comm. Math. Phys. 133 (1990),
no. 2, 383–432. MR 1090432
(92k:17032)
 [W3]
Hans
Wenzl, Braids and invariants of 3manifolds, Invent. Math.
114 (1993), no. 2, 235–275. MR 1240638
(94i:57021), http://dx.doi.org/10.1007/BF01232670
 [We]
H. Weyl, The classical groups, their invariants and representations, Princeton Univ. Press, 2nd ed., 1953. MR 1:42c (1st ed.)
 [Bi]
 J. Birman, Braids, links and mapping class groups, Ann. Math. Studies, vol. 82, Princeton, NJ: Princeton Univ. Press., 1974. MR 51:11477
 [BW]
 J. Birman, H. Wenzl, Braids, link polynomials and a new algebra, Trans. AMS 313 (1989), 249273. MR 90g:57004
 [Ch]
 M. Choda, Index for factors generated by Jones' two sided sequence of projections, Pacific J. Math. 139 (1989), 116. MR 91h:46107
 [D]
 V. Drinfeld, Quantum groups, Proceedings for the ICM, Berkeley (1986), 798820. MR 89f:17017
 [FH]
 W. Fulton, J. Harris, Representation Theory. A First Course, vol. 129, SpringerVerlag, Graduate Texts in Mathematics, 1991. MR 93a:20069
 [GHJ]
 F. Goodman, P. De la Harpe, V. Jones, Coxeter graphs and towers of algebras, vol. 14, SpringerVerlag, MSRI Publications, 1989. MR 91c:46082
 [GW]
 F. Goodman, H. Wenzl, LittlewoodRichardson coefficients for the Hecke algebra at roots of unity, Adv. Math. 82 (1990), 2445. MR 91i:20013
 [Hu]
 J. Humphreys, Introduction to Lie Algebras and Representation Theory, SpringerVerlag, 1972. MR 48:2197
 [J]
 V. Jones, Index for subfactors, Invent. Math. 72 (1983), 125. MR 84d:46097
 [Ji]
 M. Jimbo, Quantum matrix for the generalized Toda system, Commun. Math. Phys. 102 (1986), 537547. MR 87h:58086
 [M]
 J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. of Math. 24 (1987), 745758. MR 89c:57007
 [Mi]
 W. Miller, Symmetry groups and their applications, Academic Press, 1972. MR 49:3052
 [O]
 A. Ocneanu, Chirality of Operator Algebras, ``Subfactors'', Taniguchi Symposium on Operator Algebras, World Scient. (1994), 3963. MR 96e:46082
 [Po1]
 S. Popa, Orthogonal pairs of subalgebras of finite Von Neumann algebras, Journal of Operator Theory 9 (1983), 253268. MR 84h:46077
 [Po2]
 S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), 1943. MR 91h:46109
 [W1]
 H. Wenzl, Hecke algebras of type and subfactors, Invent. Math. 92 (1988), 349383. MR 90b:46118
 [W2]
 H. Wenzl, Quantum groups and subfactors of Lie type B, C, and D, Comm. Math. Phys. 133 (1990), 383433. MR 92k:17032
 [W3]
 H. Wenzl, Braids and invariants of manifolds, Invent. Math. 114 (1993), 235275. MR 94i:57021
 [We]
 H. Weyl, The classical groups, their invariants and representations, Princeton Univ. Press, 2nd ed., 1953. MR 1:42c (1st ed.)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
46L37
Retrieve articles in all journals
with MSC (1991):
46L37
Additional Information
Juliana Erlijman
Affiliation:
The Fields Institute, 222 College St., Toronto, Ontario M5T 3J1, Canada
Email:
jerlijma@fields.utoronto.ca
DOI:
http://dx.doi.org/10.1090/S0002994798020078
PII:
S 00029947(98)020078
Received by editor(s):
January 24, 1996
Article copyright:
© Copyright 1998
American Mathematical Society
